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Abstract—Recently code transformations or tailored fitness
functions are adopted to achieve coverage (structural or logical
criterion) driven testing to ensure software reliability. However,
some internal threats like negative impacts on underlying search
strategies or local maximum exist. So we propose a dynamic
symbolic execution (DSE) based framework combined with a
path filtering algorithm and a new heuristic path search strategy,
i.e., predictive path search, to achieve faster coverage-driven
testing with lower testing cost. The empirical experiments (three
open source projects and two industrial projects) show that
our approach is effective and efficient. For the open source
projects w.r.t branch coverage, our approach in average reduces
25.5% generated test cases and 36.3% solved constraints than the
traditional DSE-based approach without path filtering. And the
presented heuristic strategy, on the same testing budget, improves
the branch coverage by 26.4% and 35.4% than some novel search
strategies adopted in KLEE and CREST.

I. INTRODUCTION

Software testing is the most commonly adopted technique

to ensure software reliability. Specially, unit testing is an im-

portant white-box technique to independently check functional

correctness of a unit (a unit may contain a number of func-

tions). The traditional manual testing and random testing [1],

[2] are usually adopted to deliver test cases, although useful,

could only distinguish small parts of all possible program

behaviors [3], [4].

Thanks to the recently proposed Dynamic Symbolic Exe-
cution (DSE) technique [5], [6], the situation was alleviated.

This technique traverses program paths as many as possible

to automatically generate test cases. It collects the symbolic

constraints along the execution path triggered by a concrete

input. A variant of the conjunction of these symbolic con-

straints, i.e., the path constraint, is then solved by a constraint

solver to output a new test case. This test case will be used as

the next input to witness another new program path. In order

to achieve high code coverage, this process will continuously

iterate by enumerating all possible paths. This technique has

been widely used to generate test cases w.r.t statement or

branch coverage [5]–[9].

However, in software testing, different coverage (structural

or logical [10]) criteria are used to measure test adequacy.

For example, for safety critical software, it requires test

cases conforming to branch coverage as well as MC/DC

(Modified Condition/Decision Coverage) criterion [11]. In the

context of DSE, Pandita et al. [12] proposed a trade-off

approach to achieve a specified coverage criterion by source

code transformations. As a result, the block coverage in the

transformed program implies the MC/DC coverage in the

original program. This approach is general and easy to be

implemented on existing DSE-based tools which internally

support block coverage. However, code transformations are

language-dependent. It may change the original purposes of

the program. In addition, the transformations have to be

adapted to inherent search strategies of the DSE engine [13]

or even sometimes complicate search strategies.

In this paper, we propose a general DSE-based framework

to generate test cases under different coverage criteria. This

framework takes a unit under test (UUT) as input and outputs

test cases w.r.t. a target criterion. It unifies different criteria

through a unified structure, i.e., coverage structure (CS). This

structure is derived from the inter-procedural control flow

graph (CFG) of the UUT associated with criterion-specific

information. The key conceptual idea of CS is to provide the

freedom to design efficient underlying search strategies in a

DSE engine regardless of the intended coverage criterion.

On the other hand, test budgets are usually constrained in

coverage-driven testing. Thus, at the high level, we intend

to achieve faster coverage-driven testing with lower testing

cost. We design a CS-based path filtering algorithm in our

framework to prune path search space. The intuition is that

a feasible path candidate may be irrelevant w.r.t. some cov-

erage criterion, i.e., it once exercised may not improve code

coverage. Thus, we can reduce testing cost by safely skipping

these irrelevant path candidates. It can produce smaller test

suites with lower testing cost than the traditional DSE-based

approach in which it simply enumerates all paths. It can be

dynamically achieved during DSE without static reachability
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analysis [14].

In addition, we also propose a CS-based heuristic path

exploration strategy in our framework, i.e., predictive path
search. It favors those path candidates which have predictively

higher contribution on code coverage. The insight is that when

these candidates are exercised, they tend to cover more cover-

age goals at one blow. So it is promising to achieve reasonable

testing budget allocation especially when the budgets (e.g. pro-

gram iterations or execution time) are constrained. It can also

further accelerate the coverage-driven testing. Our coverage-

driven testing framework currently supports statement, branch

and MC/DC criteria. The tool is available online1.

This paper makes the following main contributions:

• A coverage-driven DSE-based testing framework is pro-

posed. It supports different (structural or logical) coverage

criteria through the unified coverage structure. It is easy

to be implemented on existing DSE-based tools with

different underlying path exploration strategies.

• In this framework, a path filtering algorithm and a new

path exploration strategy are implemented to achieve

faster coverage-driven testing with lower testing cost.

They are effective especially when the testing budgets are

constrained. We present details on how to realize them.

• We built this framework on our DSE engine [15]. Em-

pirical experiments are carried out on three open source

projects and two real industrial projects. For three open

source projects w.r.t branch coverage, the CS-based path

filtering algorithm in average reduced 25.5% generated

test cases and 36.3% solved constraints than the tradi-

tional DSE-based approach without path filtering. And

the new CS-based path exploration strategy, on the same

testing budget, improves the branch coverage by 26.4%

and 35.4% than some novel search strategies adopted in

KLEE [7] and CREST [16].

The remainder of this paper is organized as follows. Section

2 gives an illustrative example of our approach. In section 3,

we introduce some background and define coverage structure
followed by the details of the path filtering algorithm and the

predictive path search strategy in section 4. Section 5 presents

the empirical evaluation results. We discuss the related work

in Section 6 and conclude in the last section.

II. EXAMPLE

In this section, we present an example to illustrate our

idea. When testing a unit, our approach follows three main

steps, i.e., coverage structure updating, path filtering, and path

selection. Figure 1 shows the unit bubble taken from the flex
open source project and Figure 2 shows its control flow graph

(CFG). This unit realizes the bubble sorting by sorting the first

n elements in a given array v and places them in an increasing

order.

1CAUT: http://www.lab205.org/caut

1 # d e f i n e MAXLEN 6
2 void b u b b l e ( i n t v [MAXLEN] , i n t n )
3 {
4 i n t i , j , k ;
5 i f ( n>=MAXLEN)
6 re turn ;
7 f o r ( i =n ; i >1;−− i )
8 f o r ( j =1 ; j<i ;++ j )
9 /∗ compare ∗ /
10 i f ( v [ j ]>v [ j + 1 ] )
11 { /∗ exchange ∗ /
12 k=v [ j ] ;
13 v [ j ]= v [ j + 1 ] ;
14 v [ j +1]= k ;}
15 }

Fig. 1. Example bubble
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(a) Iteration 1

�

�

�

�

�

�

�

	


	�

�
�

	�	�

��

�
�

(b) Iteration 2
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(c) Iteration 3
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(d) Iteration 4

Fig. 2. Branch Coverage Testing on bubble

Here we denote a branch as the line number followed by T
or F to respectively represent the true or false one. From the

CFG, there are total 8 branches, i.e., 5F , 5T , 7F , 7T , 8F ,

8T , 10F and 10T . In the following we illustrate the process

under branch coverage testing. Suppose the initial input values

of v and n are randomly initialized as [4, 0, 1, 8, 0, 2] and 0,

respectively. After we test bubble within our framework, we

could get the following test cases and corresponding execution

paths:

1) Test 1: (v=[4, 0, 1, 8, 0, 2], n=0) Path 1: (5F, 7F)

2) Test 2: (v=[4, 0, 1, 8, 0, 2], n=3) Path 2: (5F, 7T, 8T,

10F, 8T, 10F, 8F, 7T, 8T, 10F, 8F, 7F)

3) Test 3: (v=[4, 2, 1, 8, 0, 2], n=3) Path 3: (5F, 7T, 8T,

10T, 8T, 10F, 8F, 7T, 8T, 10F, 8F, 7F)

4) Test 4: (v=[4, 2, 1, 8, 0, 2], n=6) Path 4: (5T)

After the first execution on the initial input, we get Path 1 and

the branches 5F and 7F are covered in Figure 2a (indicated by√
). From Path 1, two path candidates are available, i.e., (5T )

and (5F , 7T ), by flipping the branching nodes (the instance

of the original branch) for the false branch of Line 5 and Line

7 (in Path 1) respectively to their true branches. We can see

that these two path candidates are both relevant w.r.t branch

coverage. Because they once exercised may hit the uncovered

branches 5T or 7T . Thus no path candidates are skipped. They

are both put into the path pool, which stores all relevant path

99999999



candidates.

In next iteration, we favor the path candidate (5F , 7T )

because it is promising to cover more branches than (5T )

(details on this judgement is explained in the predictive path

search strategy (PPS) in section 4). As a result, we would get

Path 2 with Test 2 (assume the constraint solver randomly

assigns 3 to n to satisfy the path constraint n > 1∧n < 6).

The four branches 7T , 8T , 8F , 10F are covered in Figure 2b

at one blow. Next we re-check the remaining path candidates

in the path pool to filter irrelevant ones. Because after a

fruitful program execution, the coverage status of a UUT is

changed. Remaining path candidates in the pool may turn

relevant to irrelevant. From Figure 2b, it is obvious (5T ) is

still relevant and we keep it. On the other hand, ten new path

candidates (no duplicate path candidates are generated) are

generated in this iteration by flipping the branching nodes from

their original sides to the unexplored sides in Path 2. Nine

candidates among them are relevant and stored in the pool

except the one ending with 7F . Because from Figure 2b, only

these nine path candidates are possible to reach the uncovered

branch 10T .

We next choose to explore the path candidate (5F , 7T , 8T ,

10T ) generated by flipping the first branching node for the

false branch of Line 10 (in Path 2) to the true branch (because

it is more promising to cover the 10T branch with the shorter

length than others), we will get Path 3 with Test 3 hitting

10T . We re-check the pool and find out all path candidates

but (5T ) are irrelevant. Because according to Figure 2c, those

remaining eight path candidates (as well as new candidates

generated from Path 3) starting with (5F , 7T ) will not hit the

last uncovered branch 5T . So we filter them away and exercise

the only remaining candidate (5T ). At last, we get Path 4 and

cover all 8 branches in Figure 2d.

As illustrated in the above example, we generate only

4 test cases with 4 fruitful program iterations in achieving

100% branch coverage. In this example, the breadth-first path

selection [8] requires at least 5 program iterations (because it

wastes time on exercising the path candidate (5F , 7T , 8F )

which is eventually proved to be infeasible) and the random

path selection [7] generates more redundant test cases (because

it has no knowledge of path exercising priorities). In section

4, we will explain the predictive path search strategy in more

detail to show how to achieve faster coverage-driven testing

as illustrated in this example.

III. COVERAGE STRUCTURE

In this section, we give the background of MC/DC coverage

criterion and the definition of coverage structure.

A. Background

1) Modified Condition/Decision Coverage: MC/DC cover-

age [11] is one of rigorous logical coverage criteria. It is usual-

ly adopted in safety-critical domains. For a program (P) under

test, its branch predicates are called Decisions (D), which

contains one or more Conditions (C), i.e., Dp=C1⊕C2...Cn (⊕

stands for ∧ or ∨). The testing adequacy of MC/DC coverage

criterion requires the following four points:

• Every point of entry and exit in P has been invoked at

least once.

• For every Dp has taken all possible outcomes.

• For every Ci ∈ Dp has taken true and false at least once.

• For every Ci ∈ Dp has been shown to independently

affect Dp’s outcome. Ci is shown to independently affect

Dp’s outcome by varying just Ci while holding fixed all

other possible conditions Cj . Namely, we fix the logical

value of Cj(j �= i), and then require Dp(Ci = true) �=
Dp(Ci = false).

B. Coverage Structure

Our framework is based on the unified coverage structure
(CS) to support coverage-driven testing. It is derived from

inter-procedural2 control flow graph [17] and supports both

structural and logical coverage criteria including statement,

branch, condition, condition/decision, MC/DC and etc.

Definition 1 (Control Flow Graph): A Control Flow

Graph3 G of program P is a directed graph G=(N ,E,s,e),

where

• N is a set of nodes representing statements (including

instruction statements and conditional statements) in P .

• E is a binary relation on N (a subset of N×N ), referred

to as a set of edges which represent the flow of control

in P .

• s and e are, respectively, entry and exit nodes, s, e∈N .

Definition 2 (Coverage Structure): Coverage Structure S is

a CFG G associated with the coverage criterion C, i.e., S=(G,

C, Eval, Cov), where

• G is a CFG in Definition 1.

• Eval is a data structure which maps a CFG node to its all

evaluation results. It maintains the evaluation results of all

CFG nodes during program executions. For a conditional

statement, the evaluation result is its logical evaluation

(true or false). For an instruction statement, the evaluation

result is true if it is executed or false if not executed.

• Cov is a function. It returns a set of new covered coverage
items4 in the original program w.r.t C according to the

current Eval.

In fact, we are interested in specific CFG nodes in G w.r.t

the criterion C (e.g., instruction statements w.r.t statement

coverage, conditional statements w.r.t branch or MC/DC cov-

erage). We call these interested nodes w.r.t C in the simplified

2Inter-procedural CFG is constructed by connecting the function call site
statement in a caller to the entry statement in the corresponding callee and
connecting the return statement in this callee to the statement immediately
following that call site statement.

3We adopt a simplified form of CFG obtained by transforming composite
decisions to atomic conditional statements. We internally maintain the map-
ping relations between these statements and their original decisions. Because
we intend to measure the test adequacy on the original program instead of
the simplified program. But we conduct symbolic execution on the simplified
program.

4In the original program, we concern about instructions, branches or
decisions w.r.t different coverage criteria. We call them coverage item. But
note the CS is constructed from the simplified program.
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program as CS nodes or coverage goals. Take bubble as an

example, there are four CS nodes (four conditional statements

located at Line 5, 7, 8 and 10) w.r.t the branch criterion.

When a conditional node has the true or false evaluation, Cov
will regard its corresponding branch (in the original program)

as covered. In the following code snippet, if ((A ∧ B) ∨
C) {s1;} else {s2;}, three conditional nodes5 (A, B, C) are

concerned w.r.t the MC/DC criterion. Cov will decide whether

the corresponding decision node satisfies the test adequacy by

computing the available combinations6 of these conditions’

evaluations in Eval.
The coverage status of CS is computed from the coverage

status of all CS nodes. It is updated during program executions.

The test adequacy of the original program is measured by

Cov(C,Eval). If a path candidate fails to reach coverage

items of the original program, it is regarded as irrelevant. We

will discuss the details in the next section. Another possible

application of CS is to generate test cases for interested

code parts (e.g., in regression testing [18]). We can simply

set irrelevant nodes as covered. This can prune enormous

irrelevant path candidates which can not reach the interested

code parts.

IV. APPROACH

The idea behind our approach is that a feasible path candi-

date may be irrelevant w.r.t. some coverage criterion. We can

safely skip them to avoid wasting testing budgets. In addition,

we can select the remaining relevant path candidates with

different priorities to further accelerate coverage testing. In this

section, we are going to present this coverage-driven testing

framework in detail. We give the overview of our approach

followed by the path filtering algorithm and the predictive path

search strategy.

A. Overview of our approach

Algorithm 1 gives the outline of our approach. Initially,

the path pool σ is empty (denoted by φ) and the input

vector τ is randomly initialized as τ0. After an execution

path Π is explored under τ (Line 5). The coverage status

of CS will be updated according to Π. The engine will

collect all available path candidates (i.e., path prefixes [19])

(Line 7). CS will be used as a filter to eliminate irrelevant

path candidates among them w.r.t. the target criterion. The

remaining relevant paths will be added into σ. Then we adopt

some path search strategy Ψ to select a candidate P to continue

the coverage-driven testing until no candidates are available or

the code coverage satisfies some level β. Here the framework

is general and able to deal with different coverage criteria

under different search strategies. Because the search strategy

Ψ does not need to concern about the target criterion. CS is

responsible for maintaining the criterion-specific information.

5In the simplified CFG, this decision corresponding to three atomic condi-
tional statements.

6According to the MC/DC definition, at least four test cases are need-
ed to satisfy the test adequacy on this composite decision. Refer to
http://www.verifysoft.com/en example mcdc.html for details.

In the following, we describe the CS Updating procedure and

the Path Filtering algorithm.

Algorithm 1 Coverage-driven Testing Framework

1: Input: σ: the path candidates pool, τ : the input vector, Ψ: the
search strategy, CS: the coverage structure

2: Output: TEST: test cases, CS: the updated coverage structure
3: σ ← φ, τ ← τ0 /*initialize inputs before the main loop*/
4: repeat
5: Π ← DSE EXEC(τ ) /*concrete and symbolic execution*/
6: CS ← UpdateCS(CS,Π) /* update coverage structure */
7: path set ← CollectPathCandidates(Π) /*collect all available

path candidates*/
8: σ ← FilterPath(CS,σ,path set) /*filter irrelevant path candi-

dates*/
9: P ← SelectNextCandidate(σ,Ψ) /*select a path candidate*/

10: τ ← SolveConstraints(P ) /*solve the path constraint of P , τ
is a new generated test case*/

11: TEST ← TEST + {τ}
12: until σ=φ

∨
CoveragePercentage≥β

B. CS Updating and Path Filtering Algorithms

In CS, a conditional CS node is covered if it has both the

true and false evaluations. An instruction CS node is covered

if it has the true evaluation.

CS Updating. This procedure (at Line 6 in Algorithm 1)

aims to update the coverage status of the CS w.r.t the target

criterion. The updated CS will be used to filter irrelevant path

candidates before path selection. It takes an explored path Π
and the CS as input, and return the updated CS. Internally,

Eval will be updated during each program iteration by adding

new evaluations from those CS nodes along Π. During this

procedure, the code coverage of the original program under

test is also updated according to Cov(C,Eval).

Algorithm 2 FilterPath: Path Filtering Algorithm

1: Input: CS: the coverage structure, σ: the path candidates pool,
path set: the path candidates set

2: Output: σ: the updated path candidates pool
3: for all P ∈ path set do
4: /* P is a partial path not a complete execution path*/
5: if isRelevant(P )=true then
6: σ.push(P ) /*add into the pool*/
7: end if
8: end for
9: function isRelevant(path P )

10: /* sequentially check the CS nodes along the path P */
11: for all cs nodei ∈ P do
12: new eval ← getEval(P , cs nodei)) ∪ Eval
13: if Cov(C,new eval)!=φ then
14: /* Cov returns new covered coverage items in the original

program, otherwise it returns empty, i.e., φ */
15: return true /* a must-relevant path */
16: end if
17: if isCovered(cs nodei ∪ cs nodei.Succs)=true then
18: /* the CS node itself and its successors are all covered */
19: return false /* an irrelevant path */
20: end if
21: end for
22: return true/* a may-relevant path */
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Path Filtering. Algorithm 2 shows the path filtering algo-

rithm. Lines 5 checks whether a candidate is relevant w.r.t

C by function isRelevant. A candidate is relevant if it will

probably reach new coverage items of the original program.

Otherwise, a candidate is irrelevant w.r.t C. At Line 12, we

get the evaluation result of cs nodei from P by function

getEval, and the result from combining the new evaluation

result of cs nodei and the original Eval in CS are stored in

the variable new eval. If new coverage items in the original

program could be covered under new eval (Line 13-16), P is

a must-relevant path candidate. If there exists a CS node itself

and its successors are all covered (Line 17-20), P will not

reach any uncovered items by following it. In other words, it

will not improve code coverage of the original program. So

P is an irrelevant candidate. In the remaining circumstances

(e.g. P may reach uncovered CS nodes), P is a may-relevant7

candidate (Line 22).

In the bubble example, w.r.t branch criterion, after Path 1

(5F , 7F ) is executed, we get two path candidates (5T ) and

(5F , 7T ). From Path 1, the CS node located at Line 5 get

the false evaluation. From the candidate (5T ), we can see its

new evaluation result is true. According to Cov, this coverage

item (i.e., n>=MAXLEN) at Line 5 could be covered if the

true and false evaluation are both available. So (5T ) is must-
relevant. Similarly, (5F , 7T ) is also must-relevant. After Path

2 is executed, the candidate (5F , 7T , 8F ) is available. No

new coverage items could be covered according to Cov. But

the CS node at Line 10 (a successor of the CS node at Line

8) still remains uncovered. So the candidate is may-relevant
(because it may reach the uncovered branch 10T ). After Path

3 is explored, the CS node at Line 7 and its successors are all

covered, so all remaining candidates starting with the prefix

(5F , 7T ) are irrelevant and filtered away.

In Algorithm 2, only irrelevant path candidates are filtered

away. In addition, after one fruitful path exploration, all re-

maining candidates in path pool will be re-checked to remove

those candidates turning must-or-may relevant to irrelevant.

Discussion. An early heuristic on pruning irrelevant paths

was described in [20]. But our path filtering algorithm differs

from it in several points: (1) The heuristic is implemented on

static symbolic execution while ours is built within a dynamic

symbolic execution based framework. (2) The heuristic focuses

on branch coverage. It does not maintain any data structures

(like Eval in our approach) to record the program execution

history. So it is not easy to prune irrelevant paths w.r.t other cri-

teria (especially logical criteria). (3) In addition, our algorithm

distinguishes must-relevant candidates from may-relevant ones

in order to prioritize relevant ones (will be discussed in the

next section) when testing budgets are constrained. To our

knowledge, we are the first to apply path filtering to achieve

faster DSE-based coverage-driven testing.

7It is not easy to rule out certain P because some branches on it may
affect the reachability towards other branches later in the program. So we
bias efficiency instead of precision under this circumstance.
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Fig. 3. Predictive Path Search

C. Predictive Path Search

Earlier DSE-based testing tools [5], [6] adopt the depth-first

path exploration strategy. The DFS strategy always explores

the new path by negating the last predicate of the previous

path constraint. So it is likely to be trapped in a small code

area (e.g. in the presence of infinite loop unfolding) during

path exploration. Testing budgets (e.g., program iterations) are

wasted without hitting new coverage goals.

To cope with this disadvantage, we propose the predictive
path search (PPS) strategy. The intuition behind PPS is that

if we give a higher priority to explore those path candidates

which tend to cover more coverage goals at one blow (i.e.,

collateral coverage [21]), the program iterations as well as

generated test cases will be considerably reduced. It is also

promising to achieve reasonable testing budget allocation

especially when the budgets are limited. In other words, PPS

is intended to drive the path exploration to the code areas

with more dense coverage goals. As illustrated in Figure 3,

the filled circle represents the initial program state and the

triangles stand for coverage goals in the program under test.

After the first path (indicated by the solid line) is explored,

the PPS strategy will predict the density of coverage goals in a

local area (indicated by dashed circles) along the exploration

path. For example, it favors area 1 over 2 in Figure 3a (dotted

lines indicate possible execution paths after exercising the

corresponding path candidates) because area 1 contains more

new coverage goals than area 2. For the same reason, it

chooses area 4 over 3 in the next iteration in Figure 3b.

In the following, we detail the PPS strategy in the context of

branch coverage to simplify the explanation. It is also suitable

for other criteria like MC/DC coverage. Note that the CS is

constructed at inter-procedural level in PPS.

Path Candidates Evaluation. In PPS, we define

PotentialContr(P ) to predict the number of potential cover-

age goals that may be covered by a relevant (must-relevant or

may-relevant) path candidate P . It is statically evaluated from

CS.

PotentialContr(P ) =
UncoveredGoals(p̄l,WalkDown(p̄l, s))

Here, p̄l is the opposite branch of the last CS node on

P . WalkDown(p̄l, s) is the evaluation method by walking

down s levels starting from p̄l on CS at inter-procedural level.
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Here, a level corresponds to the level where a CS node (it

could be an instruction or a conditional statement) locates

at. It counts the uncovered goals between the start level (p̄l’s
level) and the target level (p̄l’s level plus s). The final result is

PotentialContr(P )’s value. Here we restrict the prediction

in a local area instead of simply counting the number of all

uncovered goals which are transitively control-dependent [22]

on p̄l. Because local prediction is intuitively more precise and

cheaper than global prediction and we usually have no idea

about the actual explored paths after exercising P from p̄l.
Global prediction can be regarded as a special case when

s→∞ in PPS.
Path Candidates Selection. We favor the path candidate

with bigger PotentialContr(P ) value. Because it is likely to

hit more coverage goals at one execution. If two path candi-

dates have the same PotentialContr(P ) value, the shorter

one is preferred. After each iteration, PotentialContr(P )
will be re-computed for all remaining path candidates. In

particular, during the path selection, we always choose must-

relevant candidates before may-relevant ones to eagerly climb

towards fruitful direction. Although P may turn must-relevant

to may-relevant when new goals are covered. The must-

relevant candidate queue always has a higher priority than the

may-relevant one. It could avoid possible local maxima in the

PPS strategy.
In the bubble example, from Path 1 we get two candidates

(5T ) and (5F , 7T ). Under the PPS strategy, (5F , 7T ) has a

higher priority than (5T ) because the former can potentially

hit at least 3 uncovered branches (7T , 8T and 8F ) while the

latter at most 1 uncovered branch (5F ) (assume the walk down

level s is 2).

V. EVALUATION AND ANALYSIS

A. Evaluation Design
In order to assess the benefit of our coverage-driven testing

framework, we conduct evaluations on both the path filtering

algorithm and the PPS strategy. We choose two novel path

search strategies from CREST [16] and KLEE [7] to compare

against the PPS strategy. The CFG-Directed Search strategy in

CREST achieves the highest branch coverage level against oth-

er heuristics in its evaluation. The default RP-MD2U Search

strategy in KLEE combines both random path selection (RP)

and coverage optimized search (MD2U). It aims to attack path

explosion by advantages from both RP and MD2U.

• CFG-Directed Search: The CFG-Directed search strategy

attempts to drive the execution down the branch with

the minimal distance towards uncovered goals measured

by static CFG paths. It also adopts a branch heuristic

to backtrack or restart the current search under some

failing circumstances. It is essentially a local optimal

search, since it focuses on each recently-covered branch

and never explicitly revisits previous paths.

• RP-MD2U Search: It interleaves the Random Path strat-

egy with Min-Dist-to-Uncovered heuristic. The Random

Path strategy is actually a probabilistic version of breadth-

first search, which weighs a path candidate of length l

by 2−l and randomly chooses candidates with the same

length. The Min-Dist-to-Uncovered heuristic prefers the

path candidates with minimal distance to uncovered goals

in CFG.

We built the framework on our DSE-based engine [15] and

carried out the empirical experiments on three open source

projects from SIR 8 and two industrial safety-critical projects

from our research partners. Three path exploration strate-

gies, i.e., the traditional depth-first search (DFS), the CFG-

Directed search from CREST (CAUT-CREST) and the RP-

MD2U search from KLEE (CAUT-KLEE) are implemented.

These three strategies are representatives among the-state-of-

art symbolic executors [5]–[8], [16]. Choosing these three

typical strategies helps us to assess our framework on a

fair basis. All evaluations were run on a 2.67 GHz Intel

Xeon(R) X5650 server with 2GB of RAM and running Ubuntu

GNU/Linux 12.04.

In our evaluation, we intend to address the following re-

search questions:

• RQ1: Based on the traditional DSE-based approach

(DFS-based search strategy), how much does the efficien-

cy increase with the help of our coverage-driven testing

framework (with path filtering)? We give the evaluation

results w.r.t both the branch and MC/DC criteria.

• RQ2: Within the same constrained testing budgets, to

what extend does the CS-based predictive path search

strategy (CAUT-PPS) improve the code coverage com-

pared to other symbolic execution based search strategies,

i.e., CAUT-CREST and CAUT-KLEE in our coverage-

driven testing framework (without path filtering)?

B. Implementation

CAUT [15] is a unit-testing prototype tool on C program.

The program under test is instrumented by CIL 9, which is a

C analysis and transformation infrastructure. During the exe-

cution, the symbolic engine dynamically maintains a logical

memory map and an execution tree. The map records the

mapping between symbolic and concrete values of variables.

The execution tree stores each execution path. CAUT uses

lp solve10, an open source library for linear programming, to

solve path constraints. The tool supports constraint reasoning

on both scalar types and derived types, i.e., structures, arrays

and pointers (equality/inequality constraints). It currently pro-

vides statement, branch and MC/DC coverage-driven testing.

C. Subject Programs

We choose the units from three open source projects and

two industrial projects developed by our research partners to

evaluate our approach. We adopt the cyclomatic complexi-

ty [23], which is a metric to measure code complexity, to

choose units or modules with enough code complexity. We

use the tool cyclo11 to calculate the complexity value of a

8SIR: http://sir.unl.edu/php/previewfiles.php
9CIL: http://kerneis.github.io/cil/
10lp solve: http://sourceforge.net/projects/lpsolve/
11cyclo: http://bima.astro.umd.edu/nemo/man html/cyclo.l.html
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TABLE I
BRANCH COVERAGE TESTING

Project #BR
#ITER

(dfs/cs-dfs)
#CON

(dfs/cs-dfs)
#COV

(dfs/cs-dfs)
bash 312 907/643 6981/4663 83.3%/83.3%
flex 248 837/596 7367/4712 85.1%/86.7%

make 436 1043/849 9518/5734 83.6%/85.8%
osek os 276 737/534 6458/4409 80.4%/80.4%

space control 424 1112/737 9692/6964 82.3%/84.4%

TABLE II
MC/DC COVERAGE TESTING

Project #DC
#ITER

(dfs/cs-dfs)
#CON

(dfs/cs-dfs)
#COV

(dfs/cs-dfs)
bash 156 1231/984 9981/7663 80.2%/80.2%
flex 124 1029/733 8460/5973 70.3%/76.6%

make 218 1235/994 12518/8734 76.9%/77.9%
osek os 138 978/654 9827/6397 76.6%/76.6%

space control 212 1373/943 11739/8436 80.4%/83.1%

unit. For three open source projects from SIR (bash, make,

and flex), we choose 69 units whose cyclomatic complexities

all exceed 812 with total size 14K LOC. One industrial

project is a commercial automotive operating system (osek os)

conforming to the OSEK/VDX [24] standard. It contains 51

units (with complexity value 7.5 in average) with about 10k

LOC. It runs on electronic control units with static priority

schedule mechanism in automobiles. The other one is a control

system software (space control) of some satellites from China

Academy of Space Technology (CAST). It contains 70 units

(with complexity value 9.4 in average) with roughly 15K LOC.

These two industrial projects feature complicate execution

logic. We choose benchmarks from different software projects,

as we intend to make our evaluation results as convincing as

possible.

D. Result and Analysis

RQ1: Efficiency and Effectiveness. In this evaluation, we

use the number of program iterations and solved constraints as

measurements on the performance of coverage testing. Note

one program iteration indicates one feasible path candidate is

exercised and one test case is generated. For a DSE-based

approach, program execution and constraint solving count

for most testing costs. So, it is reasonable to measure the

performance by these two factors. We limit the maximum

testing budget (time cost) as 20 minutes for each project.

Tables I and II show the detailed statistics of the tradi-

tional DSE-based approach (DFS-based search strategy) with-

out/with the help of the coverage-driven testing framework

(with path filtering). They, respectively, show the evaluation

results w.r.t branch coverage and MC/DC coverage testing on

these five projects. The second columns list the correspond-

ing total branches (BR) or decisions (DC). The third and

fourth column represent the total number of program iterations

(ITER) and solved constraints (CON). The last column gives

12In software practice, when the cyclomatic complexity value of a unit or
module exceed 10, this module is regarded as too complex and should be
split. So we choose units with complexity value above 8.

the average coverage percentage (COV). In the last three

columns, we give the result without/with the help of the

coverage-driven testing framework (dfs/cs-dfs).

From these two tables, we can see our approach greatly re-

duced the iterations of program execution (as well as generated

test cases). The solved constraints are also greatly reduced. In

Table I, take the project flex as an example, compared with

the traditional DSE-based approach, our approach reduced

roughly 28% program iterations and 36% solved constraints

w.r.t branch coverage testing. For MC/DC coverage, the sit-

uation is similar. From Table II, nearly 31% iterations and

28% constraints are reduced for space control. And in two

tables the coverage levels on some projects are a little higher.

The reason is that we encountered 10 units (nearly 5% in

total) featuring complicate loop structure. They ran without

termination within the maximum allowed time (so it failed to

cover some branches or decisions). The DFS strategy alone is

easy to be trapped in infinite loop unfolding and wastes time

in exploring unfruitful path candidates. But with the benefit

from path filtering, many irrelevant paths generated by loop

unfolding are filtered away.

Although we only compare the evaluation results between

the classic DFS strategy without/with path filtering, this path

filtering algorithm is also effective and adaptable to other path

exploration strategies, like CAUT-KLEE and CAUT-CREST.

Because these search strategies may also exercise irrelevant

path candidates although they are less likely to be trapped

during execution.

RQ2: Heuristic Strategies To evaluate the effectiveness of the

PPS strategy, we run the coverage-driven testing under three

path exploration strategies, i.e., CAUT-PPS, CAUT-CREST

and CAUT-KLEE on the constrained testing budget in terms

of program iterations. We set the maximum iterations of one

UUT as 100 in case it does not terminate. All UUTs are tested

in turn (start testing the next unit after finishing one) under

three different strategies. In addition, because three heuristics

inherently contain randomness, we repeat the testing process

30 times for each heuristic and take the average value as the

final result. In the PPS strategy, we observed different walk

down levels have different impacts in preliminary evaluations.

The overall optimal performance could be achieved when s
equals 3. So we set the walk down level as 3 in this evaluation

(We omit the experiment on this observation because of

space limitations). Some readers may wonder it will be more

convincing to compare the performance between the proposed

design with and without the PPS strategy. But in a DSE

framework, we have to adopt one path search strategy to select

paths. So it is impossible to conduct testing without the PPS

strategy.

Figure 4 shows the results of three heuristic strategies on

branch coverage while Figure 5 shows the results on MC/DC

coverage. For example, the left two sub-figures (a) and (b)

of Figure 4 shows the results on two open source projects

(bash and flex) while the right two sub-figures (c) and (d)

shows the results on two industrial projects (osek os and

space control). The horizontal axis denotes the number of
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program iterations and the vertical axis represents the number

of covered branches.

From Figures 4 and 5, we can see that CAUT-PPS achieves

higher coverage level than CAUT-CREST and CAUT-KLEE

within the same constrained program iterations, which means

CAUT-PPS performs more faster coverage-driven testing. We

can notice the curves of CAUT-PPS are more steep than those

of the other two strategies. The reason is that among all avail-

able relevant candidates, CAUT-PPS always eagerly explores

the path candidates with highest predictive contribution on

code coverage. But CAUT-KLEE or CAUT-CREST decides

the exploration direction only on path length or distance met-

ric. In detail, for open source projects and industrial projects,

CAUT-PPS respectively improves about 26.4% and 23.2% in

average than CAUT-KLEE w.r.t branch coverage. Compared

with CAUT-CREST, it respectively improves about 35.4% and

22.9%. The trend is similar on MC/DC coverage.

In addition, in the most sub-figures of Figure 4, we can

observe that there exist such situations (some horizontal parts

of curves) where three strategies all spin at the same hor-

izontal level, i.e., they continue to iterate without reaching

new goals. But the spin time of CAUT-PPS is much shorter

than CAUT-KLEE and CAUT-CREST. The reason behind

this phenomenon is that when CAUT-PPS is exercising may-

relevant candidates (they are eventually unfruitful without

hitting new coverage goals), once must-relevant candidates

emerge, it will immediately jump to exercise must-relevant

ones (they are probably fruitful). In other words, CAUT-PPS

is aware of the coverage information at runtime maintained

by CS and capable of dynamically adjusting its exploration

direction. However, CAUT-KLEE and CAUT-CREST are not

directly driven by this information and may waste more time

on continuing exploring eventually unfruitful path candidates.

However, we find CAUT-PPS is not always effective un-

der some situations. Careful readers may notice another

situation (for example, in the sub-graph (d) of Figure 4,

for space control, when the number of covered branches

reach 300, observing from the same horizontal level, CAUT-

PPS spins a longer time than CAUT-KLEE or/and CAUT-

CREST). In other words, CAUT-PPS requires more iterations

than the either one to reach a new goal. This phenomenon

happens when the CS-based contribution prediction sometimes

is imprecise. The following simplified code fragment from

space control demonstrates this situation.

1 void l oop ( i n t v [ 6 ] , i n t x ) {
2 i n t i ;
3 i f ( x ==2){
4 f o r ( i =0 ; i <6; i ++)
5 i f ( v [ i ]==3) x ++;
6 i f ( x ==6) { . . . }
7 }
8 }

Under branch coverage testing, it is easy for CAUT-PPS to take

three iterations to cover all branches except the 6T branch in

the above code (assume all elements in array v are initially

not equal to 3 and x is initially not equal to 2). Based on the

feedback from CS, CAUT-PPS will next eagerly to exercise

the candidate generated by flipping the branching node for

the false branch of Line 6 to the true branch. Because it is

a must-relevant one (the 6T branch is uncovered). But it is

actually infeasible (In the third iteration, we flip one branching

node for the false of Line 5 to the true branch in order to

cover the branch 5T . So only one element in v is equal to

3 and x can not be equal to 6). So CAUT-PPS degrades to

exercise the remaining may-relevant candidates spawned by

flipping the branching node 5T or 5F to its opposite (such
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candidates continuously grow because of the loop unfolding) .

CAUT-PPS treats them equally (their PotentialContr values

are all equal to 1) and randomly chooses them. However,

through code inspection, we can see that only when at least

four elements in v are equal to 3 will the 6T branch be

covered. Eventually attempting many times, it hits the 6T
branch by chance. But for CAUT-KLEE, it interleaves the RPS

and MD2U in which the RPS is more focused than CAUT-PPS

to exercise the shortest candidates by exercising those critical
unexplored branching nodes (like 5T ) to satisfy the underlying

constraint. In this example, it takes only 39% iterations than

that of CAUT-PPS to hit 6T in CAUT.

This situation can be alleviated by combining the fitness-

guided path exploration technique [25]. This technique attacks

the problem, i.e., only by satisfying some indirect relationship

between the test inputs and some program condition (like

x==6 in the above example) can we hit some goals. Thus

the PPS and the fitness-guided strategy can be regarded as

orthogonal methods. The former attempts to hit coverage goals

as much as possible at one blow while the latter tries to cover

one hard-to-hit goal at one time. We have integrated the fitness-

guided strategy into our tool CAUT. By interleaving the PPS

and the fitness strategy, we found the performance could be

further improved by 5%-8% in average in terms of iterations.

And in the above example, this interleaved strategy only takes

30% iterations than that of CAUT-PPS.

E. Discussion and Threat to validity

In our evaluation, we have not directly built our framework

on KLEE or CREST. The main reasons are following: (1)

CREST does not support real numbers, composite structures

(struct or union) and symbolic pointer reasoning. But these

features are required in testing real world programs. (2) KLEE

focuses on line coverage and it measures branch coverage

based on LLVM13 bitcode instead of original source code. It

it is not easy to measure code coverage w.r.t logical criterion

on LLVM bitcode. Although it is possible to replay test

cases from KLEE on CAUT, it is still difficult to profile

execution performance among different symbolic executors.

So we implemented all search strategies on top of CAUT.

Some threats exists in the validity of our evaluation. First,

we implemented the search strategies on our CIL-based tool

CAUT. The original RP-MD2U strategy in KLEE uses the

number of LLVM instructions to measure the minimal distance

between one coverage goal to another while CAUT uses CIL

statements or instructions as its distance metric. KLEE is a

static symbolic executor while CAUT is a dynamic symbolic

executor. These differences may affect the performance of

the RP-MD2U strategy on our benchmarks. Second, we re-

implement the two search strategies from CREST and KLEE

on our tool. The implementation may differ from their original

versions. But we carefully inspected their source codes and

technical reports to ensure our implementation correctness.

Third, our benchmarks are much smaller than that of KLEE.

13LLVM: http://llvm.org/

The strategies from CREST and KLEE work on the whole

program while we focus on unit (program moudles) testing

according to our research motivation. But we have chosen

units with enough code complexity from different projects as

benchmarks to ensure the evaluation result as convincing as

possible.

VI. RELATED WORK

Coverage-driven Testing. A lot of research works have

been conducted in the field of automating test data generation

to achieve high coverage testing [26]. Dynamic symbolic

execution [27] is one of promising techniques to automate this

testing process. A number of state-of-art DSE-based tools [5]–

[7] achieve statement or branch coverage by path exploration.

Random testing [28] has also been adopted to achieve MC/DC

criterion. However, based on the unified coverage structure,

our approach is able to directly support both structural and

logical coverage criteria without code transformations [12].

Furthermore, this coverage-driven testing framework is easy

to be implemented on existing DSE-based tools regardless of

their inherent path exploration strategies. In the field of search-

based techniques [29], researchers have adopted different

evolutionary algorithms [30], [31] to identify test data by

exploring the input space of the program. This technique is

very effective in enforcing high branch coverage. In order

to support other criteria like MC/DC, they tailored fitness

functions in the search process to generate specific test cases.

However, this approach may incur local maximum [12], i.e.,

the input value is usually optimal within a neighboring set

of solutions. The formal-verification based technique [32]

has also been applied to generate high coverage test data

combined with formal specification languages. This proof-

based approach statically identifies test data by reasoning

about all possible runs of a program. In contrast, our DSE-

based framework can precisely handle heap operations and

pointer aliases. Augmented DSE [13] is also proposed to

achieve criteria such as boundary and logical criteria from the

regression testing perspective. But it is realized by augmenting

path conditions with additional conditions which is different

from our approach.

Search Space Reduction. The DSE-based approach inherent-

ly suffers from the problem of path search space explosion.

The RWset [33] and path subsumption methods [34] reduce

search space when the current state is considered similar to a

previously visited state. This approach prunes path exploration

from the execution history version. But our path filtering

algorithm judges the relevance of path candidates from its

future reachability.

Path Search Strategies. Earlier DSE-based tools [5], [6]

adopt the depth-first search. SAGE [9] uses a generational
algorithm for path selection. PEX [8] is designed for C# with

a bundle of heuristic search strategies with a bias towards

shorter path candidates. These search strategies usually target

one coverage goal at one time by different measurements. In

contrast, the PPS strategy favors the candidate with the ability

to hit coverage goals as much as possible at one iteration.
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The CFG-Directed search strategy [16] is also based on static

measurement from CFG. But it attempts to drive the execution

down the branch with the minimal distance towards uncovered

goals while PPS drives the execution towards areas with more

uncovered goals by a local prediction. PPS prioritizes path

candidates by their potential contributions on the code cover-

age w.r.t. some criterion. Fraser et al. [35] adopted a genetic

algorithm to consider multiple coverage goals simultaneously

instead of one after another with the expectation to reduce the

test suite as small as possible. This approach starts from an

initial population of test cases. But the PPS strategy considers

multiple coverage goals by predicting a candidate’s coverage

contribution without initial test suites.

VII. CONCLUSIONS AND FURTHER WORK

In this paper a general DSE-based coverage-driven testing

framework is proposed. It supports both structural and logical

coverage criteria through the unified coverage structure. It is

easy to be implemented on existing DSE-based tools. A CS-

based path filtering algorithm and a CS-based path exploration

strategy are proposed to achieve faster coverage-driven testing

with lower testing cost. The empirical experiment on C pro-

grams shows they are effective. There are also some interesting

avenues for future work. First, we would like to investigate

the performance of the path filtering algorithm under different

path search strategies. And we will conduct more experiments

with different walk down levels in the PPS strategy. Second,

we would like to investigate how to interleave different search

strategies by combining their respective advantages more

effectively but without affecting the original code coverage.
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mann, and W. Visser, “Symbolic Execution for Software Testing in
PracticePreliminary Assessment,” in ICSE. New York, NY, USA: ACM,
2011, pp. 1066–1071.

[28] M. Staats, G. Gay, M. W. Whalen, and M. P. E. Heimdahl, “On the
Danger of Coverage Directed Test Case Generation,” in FASE, 2012,
pp. 409–424.

[29] P. McMinn, “Search-based Software Test Data Generation: A Survey,”
Softw. Test. Verif. Reliab., vol. 14, no. 2, pp. 105–156, Jun. 2004.

[30] Z. Awedikian, K. Ayari, and G. Antoniol, “MC/DC Automatic Test Input
Data Generation,” in GECC, 2009, pp. 1657–1664.

[31] K. Ghani and J. A. Clark, “Automatic Test Data Generation for Multiple
Condition and MCDC Coverage,” in ICSEA, 2009, pp. 152–157.

[32] W. Ahrendt, W. Mostowski, and G. Paganelli, “Real-time Java API
Specifications for High Coverage Test Generation,” in JTRES. New
York, NY, USA: ACM, 2012, pp. 145–154.

[33] P. Boonstoppel, C. Cadar, and D. R. Engler, “RWset: Attacking Path
Explosion in Constraint-Based Test Generation,” in TACAS, 2008, pp.
351–366.

[34] S. Anand, C. S. Pasareanu, and W. Visser, “Symbolic Execution with
Abstract Subsumption Checking,” in SPIN, 2006, pp. 163–181.

[35] G. Fraser and A. Arcuri, “Whole Test Suite Generation,” TSE, vol. 39,
no. 2, pp. 276–291, 2013.

107107107107


