
A Refinement Hierarchy for Free List Memory
Allocators

Bin Fang2,1 and Mihaela Sighireanu1

1 IRIF, University Paris Diderot and CNRS, France
2 Shanghai Key Laboratory of Trustworthy Computing, ECNU, China

Abstract. Existing implementations of dynamic memory allocators (DMA) em-
ploy a large spectrum of policies and techniques. The formal specifications of
these techniques are quite complicated in isolation and very complex when com-
bined. Therefore, the formal reasoning on a specific DMA implementation is dif-
ficult for automatic tools and mostly single-use. This paper proposes a solution
to this problem by providing formal models for a full class of DMA, the free list
class. To obtain manageable formal reasoning and reusable formal models, we
organise these models in a hierarchy ranked by refinement relations. We prove
the soundness of models and refinement relations using an off-the-shelf theorem
prover. We demonstrate that our hierarchy is a basis for an algorithm theory for
the class of free list DMA: it abstracts various existing implementations of DMA
and leads to new DMA implementations. We illustrate its application to model-
based code generation, testing, run-time verification, and static analysis.

Keywords: Free list memory allocators, Formal methods, Refinement, Model-based
design, Formal analysis

1 Introduction

A dynamic memory allocator (DMA) is a piece of software managing a reserved region
of the heap. It appears in general purpose libraries (e.g., C standard library) or as part
of applications where the dynamic allocation shall be controlled to avoid failure due to
memory exhaustion (e.g., embedded critical software). A client program interacts with
the DMA by requesting blocks of memory of variable size that it may free at any time.
To offer this service, the DMA manages the reserved memory region by partitioning it
into arbitrary sized blocks of memory, also called chunks. When a chunk is allocated to
a client program, the DMA can not relocate it to compact the memory region (like in
garbage collectors) and it is unaware about the kind (type or value) of data stored. The
set of chunks not in use, also called free chunks, is managed using different techniques.
In this paper, we focus on free list allocators [13,23], that record free chunks in a list.
This class of DMA includes textbook examples [13,11] and real-world allocators [14].

The ultimate motivation of our work is the synthesis of code for DMA which is
optimal and formally proved correct. This task presents some difficulties because, as
shown in [23], there is no optimal general solution to obtain DMA that provide both
low overhead for the management of the memory region and high speed in satisfying

2 Bin Fang and Mihaela Sighireanu

memory requests. Consequently, the design of the DMA shall take into account its
specific use and adjusts the combination of techniques to obtain an optimal solution
for this use. The formal methods shall be able to deal with such customisation which
usually combines highly optimised low level code (e.g., pointer arithmetics, bit fields)
with efficient high level data structures (e.g., hash tables with doubly linked lists). The
difficulty to formally analyse particular DMA implementations has been demonstrated
by several projects [5,17,22,12,6]. These projects make use of highly expressive logics
to specify the memory organisation and content, e.g., second order logics or Separation
Logic [19], which need sophisticated tools to be dealt with.

This paper is a first step towards this ultimate target. It surveys a full class of DMA,
the list based DMA, in order to provide an algorithm theory [20] for it, i.e., a structure
common to the implementations in this class, which abstracts away specific implemen-
tation concerns. The algorithm theory for free list DMA is given as a set of formal
models organised in a hierarchy ranked by refinement relations. It establishes a for-
mally specified taxonomy of the techniques employed by the implementations of list
based DMA. To limit the complexity of this work, we focus on DMA without support
for concurrency, i.e., used in a sequential setting.

More precisely, we start from the most abstract specification of DMA and we refine
it incrementally, by introducing specific design tactics (e.g., lazy and eager coalescing
of chunks, policies for choosing the fitting chunk, boundary tag technique). The order
in which the design tactics are considered is a consequence of a set of refinement prin-
ciples we determine in this paper. These principles are dictated by the ability to conduct
correctness and refinement proofs. Hence, given a formal model M and a set T of ap-
plicable tactics for refinement, we choose a technique t ∈ T such that t is required to be
fixed for the refinement ofM by tactics in T \{t}. For example, we first refine the most
abstract specification of DMA by the specific techniques employed for the collapsing
of free chunks. Indeed, we found out that the tactics used to manage the list of free
chunks (e.g., boundary tags) are bound to specific collapsing tactics (for instance, early
collapsing).

We show that our taxonomy covers eleven case studies, seven of them representing
open source DMA implementations (e.g., [4,3,11,14]) and the remainder being our im-
plementations of list based DMA described by Knuth in [13]. Moreover, we get formal
models for new combinations of techniques, not covered by the set of case studies we
consider. Actually, our formal models are implementation independent due to the use of
a formally defined signature S that abstracts the implementation details. For example,
the taxonomy maps to the same model two implementations employing the same de-
sign tactics but keeping track of the size of chunks in different ways (e.g., as an integer
or by the address of the next chunk). Therefore, the model-based verification and code
generation methods could use the specific implementation of the abstraction signature
S to reach a DMA implementation.

Our work has a more theoretical consequence. It reveals the class of logics necessary
to specify precisely each of the design tactics considered and thus it is a useful guide for
the formal verification of DMA. For example, we identified the technique that requires
second order logic to capture its precise state invariant: the use of a list of free chunks
which is not sorted by the start address of chunks (see Section 4.1). Excepting this

A Refinement Hierarchy for Free List Memory Allocators 3

technique, the models proposed use only first order, universally quantified formulas for
state invariants, which is a good class for automatic provers.

The formalisation work is done using Event-B [1] and the tool Rodin [2]. An Event-
B model is a state machine with set-typed variables; it specifies the invariants to be
satisfied in each state and the state changes, called events. The events are specified by
defining their activation condition and the effect they produce on the state. A state ma-
chine M1 may be refined to obtain a new machine M2 by adding more state variables
or events. Rodin generates automatically the proof obligations needed to prove the re-
finement relation (i.e., machine simulation) and it calls existing automatic solvers to
discharge them or, if these solvers fail, the interactive proof system.

Notice that the knowledge of these tools is not mandatory for the reader of this paper
and we present the specifications such that they may be exported to other systems pro-
viding powerful logic theories and means for refinement proofs, e.g., TVLA or Isabelle.
To sum up, this paper has the following contributions:

– We propose an algorithm theory for the class of free list DMA by defining a set
of formal models organized in a hierarchy ranked by (formally proved) refinement
relations; this set of models provides a formal specification for correctness of DMA
implementations. Our hierarchy is extensible to other design tactics for the same
class of DMA.

– We identify a signature representing an abstraction from implementation details
of DMA; this signature is the link between the formal models proposed and the
concrete implementations.

– We show how that eleven existing DMA implementations are specified by models
in our hierarchy.

– We illustrate the application of this work to model-based program synthesis, testing
and verification techniques for DMA implementations, mainly test case generation,
run-time verification, and static analysis.

The paper is organized as follows. Section 2 introduces the DMA services and pro-
vides their first abstract specification. Then, it surveys the existing policies and tech-
niques for free list DMA, presents our case studies, and concludes with our refinement
principles. Section 3 defines a first refinement step and the models it produces for the
low level management of the memory region, i.e., the heap list. Section 4 continues the
refinement by introducing the policies for the high level memory management using
the free list. Section 5 presents the abstract signature and its concretisations to the case
studies considered. Section 6 illustrates the applications of this work to model-based
testing and verification of DMA. We provide links with existing work and conclude in
Section 7.

2 Dynamic Memory Allocators

This section overviews the service provided by DMA and the techniques and policies
used in existing implementations. This survey leads to a first formal model and a set of
refinement principles.

4 Bin Fang and Mihaela Sighireanu

2.1 DMA Service

A conventional DMA manages a set of memory blocks in the data segment of a pro-
cess in order to satisfy requests for memory issued by its clients. We call a memory
block managed by the DMA a chunk. The DMA splits each chunk into two parts (see
Figure 2): (i) a header used to store information about the chunk (e.g., its size), and
(ii) a body which may store clients’ data. The offset of the start address of the body
with respect to the start address of the chunk is fixed in a given DMA implementa-
tion; therefore, the size of the body is easily obtained from the full size of the chunk.

void init();
bool free(void* p);
void* alloc(size_t sz);
void* realloc(void* p, size_t sz);

Fig. 1. Interface of DMA

The DMA communicates with its clients
through the interface provided in Figure 1. The
method init initialises the set of chunks man-
aged and marks them all to be free, i.e., avail-
able for allocation requests. A call alloc(n)
searches a free chunk whose body has size (in

bytes) at least n. Indeed, some DMA implementations reserve more space than the re-
quested size to obtain address alignment or to avoid memory fragmentation. If such
a chunk is found, it is marked as busy and alloc returns the start address of chunk
body; otherwise alloc returns an invalid address, which is denoted here by nil. A call
free(p) succeeds if p is the start address of the body of a busy chunk; the chunk is
marked as free and the call free returns true. Otherwise, the call does nothing and
returns false. The size of a busy chunk may be changed to n using realloc(p,n).
If the size is decreased, a new free chunk is created at the end of the body pointed by
p and the returned pointer is p. Otherwise, realloc either enlarges the chunk of p if
it is enough room (and returns p) or allocates a new chunk, frees the chunk of p after
copying its body in the new chunk, and returns a pointer in the new chunk.

Table 1. Most abstract specification A

Constants State σ
hst, hli limits of the memory region H ,F set of all chunks resp. free chunks
chd, cal ∈ N size of header resp. alignment csz : H → N size of a chunk
fit : H × N→ N fitting a chunk with a request cst : H → {0, 1} status of a chunk (1–free, 0–busy)

Invariants for states σ , 〈H,F, csz, cst〉
I1 : H ⊆ [hst, hli[domain of chunks I2 : ∀c ∈ H · c mod cal = 0 chunk alignment
I3 : chd > 0 non empty header I4 : ∀c ∈ H · csz(c) ≥ chd size includes header
I5 : F ⊆ H ∧ ∀c ∈ F · cst(c) = 1 ⇐⇒ c ∈ F chunk status exactly represent F
I6 : ∀b, c ∈ H · c 6= b⇒ [c, c+ csz(c)[∩ [b, b+ csz(b)[= ∅ chunks are pairwise disjoint

Init

σ
init()−−−−→ σ[F ← σ.H]

FreeS
∃c ∈ σ.H \ σ.F · p = c+ chd

σ
free(p):true−−−−−−−−→ σ[cst(c)← 1]

FreeF
∀c ∈ σ.H \ σ.F · p 6= c+ chd

σ
free(p):false−−−−−−−−→ σ

AllocS
c ∈ σ.F fit(c, s) ≤ σ.csz(c) p = c+ chd

σ
alloc(s):p−−−−−−−→ σ[cst(c)← 0]

AllocF
∀c ∈ σ.F · fit(c, s) > σ.csz(c)

σ
alloc(s):nil−−−−−−−→ σ

A Refinement Hierarchy for Free List Memory Allocators 5

2.2 A Very Abstract Specification

Table 1 includes a formal specification of the above informal description. Because
realloc is a composition of alloc and free, we provide its formal specification
in the Appendix. The memory region managed by the DMA is seen as a sequence of
bytes starting at the address hst and ending before address hli. A state of the memory
region is modelled by a tuple σ , 〈H,F, csz, cst〉 where:

– The set H represents the start addresses of chunks managed. We denote by c, c′, . . .
the elements of H and they represent also (unique) identifiers of chunks.

– The size of the chunk, stored in its header, is modelled by the total mapping csz.
The size of the header is modelled by the constant chd; it also gives the offset of
the starting address of the chunk body.

– The status of the chunk (1 for free, 0 for busy), stored in its header, is modelled by
cst. For readability of specifications, we denote by F the set cst−1(1), i.e., the set
of free chunks.

Notice that the content of chunk body is abstracted out. Therefore, the specification of
realloc is not precise in this abstraction. We use the dotted notation, e.g., σ.H , for
state components.

The properties I1–I6 are correctness invariants for abstract states. I1 specifies that
the elements of H shall be in the limits of the memory region managed. The alignment
of the start addresses of chunks on multiples of the constant cal is specified by property
I2. Property I6 requires that chunks in H occupy pairwise disjoint memory blocks. The
relation between F and cst is specified by I5.

The correct behaviors of the DMA methods are specified by inference rules in Ta-

ble 1. We denote by σ
m(a):r−−−−→ σ′ the change of state from σ to σ′ produced by the

call of method m (in Figure 1) with parameter a and the returned value r (we omit r
if void). We denote by σ[f ← e] the state which is exactly σ except the component f
which values is set to e. In rules for alloc, we use the mapping fit to abstract the way
of computing the number of bytes fitting a request. For example, fit(c, n) = (n+ 3)/4
aligns n to a multiple of four bytes; examples of fit mappings are given in Table 15.

This specification reveals the main ingredients of the DMA without fixing a special
policy or technique. Its high degree of abstraction and simplicity is obtained due to the
following two hypotheses on abstract states:

– Fixed set H of chunks managed: This hypothesis is not satisfied in general, but it is
present in implementations where the size of chunks is fixed to some constant (or
set of constants).

– External implementation of the set data structure: By abstracting the implementa-
tion of data structure, we cannot specify the disposition of chunks inside the data
segment, which controls important properties of DMA implementations, in partic-
ular, the absence of memory leaks.

2.3 Design Tactics for Free List DMA

When removing the above simplifying hypotheses, we face a large variety of policies
and techniques for implementing sets of chunks. This paper focuses on implementa-
tions using a heap list inside the managed memory region; we discuss in Section 2.6

6 Bin Fang and Mihaela Sighireanu

the modelling of other classes of DMA implementations. In this section, we shortly
describe the design tactics relevant for this class; we encounter them in the case stud-
ies discussed in the next section and in comprehensive surveys of memory allocators
like [23]. These design tactics are summarised as columns of Table 2.

hst hli

chunk size

chunk start

body

he
ad

er

chk0 chk2 chk3 chk4

Fig. 2. Heap list

A heap list stores the chunks in sequence in-
side the memory region, like shown in Figure 2.
Two techniques exist to encode the successor of
a chunk in the heap list: (i) the header stores the
start address of the next chunk or (ii) using the
chunk size and address arithmetics, i.e., the ex-
pression c + σ.csz(c). Moreover, some DMA im-
plement a doubly-linked heap list using the principle of “boundary tag” [13], which
consists in using the last bytes of a chunk (i.e., the bytes just before the start of its suc-
cessor in the list) to store a copy of its status and size. This feature is represented by the
column “linked” in Table 2, where “→” (resp. “↔”) means singly (resp. doubly) linked
list, and “addr” (resp. “size”) represents technique (i) (resp. (ii)) above.

To fit a request, the DMA may split a free chunk into two chunks: a chunk allocated
for the request and a smaller free chunk. The order between these chunks is another
parameter of our taxonomy, represented by the column “split” in Table 2, where the
values indicate the position of the free chunk after splitting.

Splitting of chunks may lead to memory fragmentation. There exist two main poli-
cies for defragmentation (column “defrag.” in Table 2), both of them join sequences
of free chunks in one free chunk. Early coalescing policy does defragmentation during
free; the newly free chunk is joined with its next and previous neighbours if they are
free. Thus, the heap list never contains two adjacent free chunks. Lazy coalescing policy
does defragmentation during the call of alloc, if none of the existing free chunks is
large enough to satisfy the request.

A technique to accelerate the search of a fitting free chunk during alloc consists in
indexing free chunks in an additional data structure. This paper focuses on DMA where
the free chunks are kept in a list, called the free list. This list is built using additional
information in the chunk header and it may have several shapes: singly or doubly linked,
acyclic or circular, etc. Moreover, some techniques keep the free list sorted by the start
address of chunks in order to accelerate defragmentation.

The last design tactic we consider is the policy used to select a fitting free chunk
when several are available. Possible options are: first fitting chunk in the heap list or the
free list, chunk which fits (with smallest difference) the request, i.e., best fit, next fitting
chunk with respect to the last allocation or deallocation.

2.4 Case Studies

Table 2 summarises the design tactics employed by eleven case studies implementing
list based DMA. Four of these case studies (DKFF, DKBF, DKNF, DKBT) are our C
implementations of algorithms proposed in [13]; the remainder are external and open
source C implementations we found in research and survey papers on DMA and DMA
verification. These case studies appear to us as representative for the list based DMA

A Refinement Hierarchy for Free List Memory Allocators 7

Table 2. Design tactics employed in case studies
heap list free list fit Model

Case study linked split defrag. shape sorted policy Figure 3
IBM [4] addr,→ – – – – first MH
DL-small [14] size,→ – – – – first MH
TOPSY [8] size,→ at end lazy – – first MHL
DKFF [13] size,→ at start early acyclic,→ yes first MSAF
DKBF [13] size,→ at start early acyclic,→ yes best MSAB
LA [3] size,→ at start early acyclic,→ yes first MSAF
DKNF [13] size,→ at start early acyclic,→ yes next MSAN
KR [11] size,→ at start early cyclic,→ yes next MSC
DKBT [13] size,↔ at start early acyclic,↔ no best MUAD
DL-list [14] size,↔ at start early acyclic,↔ no best MUAD
TLSF [18] size,↔ at start early acyclic,↔ no best MUAD

because they illustrate all the design tactics we listed in the previous section. We provide
a short overview of these allocators in the increasing order of complexity.

The first part of Table 2 contains pure (i.e., without free list) heap list DMA. The
DMA TOPSY is the memory manager of the TOPSY operating system [8]. Some of its
properties (e.g., heap list, chunk separation) have been already specified and proved on
the code using Isabelle/HOL (see Section 7). The IBM allocator is provided in [4]. The
DL-small allocator is extracted from Doug Lea’s allocator [14]; it represents the part
which deals with requests with size less than 256 bytes.

The case studies in the second part of Table 2 uses singly linked, address sorted,
free lists. The DKFF and DKBF allocators are our implementations of algorithms A
and B Section 2.5 of [13], for which we choose the first-fit and best-fit policies. The LA
allocator [3] is the implementation of Knuth’s algorithm A by Aldridge. The DKNF al-
locator is our implementation of the next-fit policy using the “roving pointer” technique
proposed in [13] (Exercice 6 in Section 2.5). The KR allocator is the code published
in [11] for a next fit, circular free list DMA.

The third part of Table 2 contains case studies using doubly linked free lists. The
DKBT allocator is our implementation of the “boundary tag” technique introduced
in [13] (Algorithm C in Section 2.5). In C, this technique is implemented by setting
as first field of the chunk header the information (status and start address) of the previ-
ous chunk in the heap list; this information is generally used only if the previous chunk
is free, as part of the coalescing of adjacent free chunks. The DL allocator is a simpli-
fication3 of the part of Doug Lea’s allocator [14] for medium size requests. The TLSF
allocator is a simplification of the code described in [18]. It distributes the free chunks
in several doubly linked lists, depending on their size, in order to reduce the search for
the best fitting chunk.

2.5 Mining the Case Studies for Refinement

We discuss here our findings and provide a rationale of our refinement strategy.

3 We removed the code concerning concurrency, portability, and some optimisations.

8 Bin Fang and Mihaela Sighireanu

We identify three classes of implementations, represented by the three regions of
Table 2. The first class, represented by the first three lines in the table, does not use a
free list; the other classes use a free list but they mainly make different choices for the
shape of the heap list and the sorting of the free list. An important observation relates the
design tactics with the basic operations on lists. Indeed, chunk splitting and defragmen-
tation call two elementary operations on heap lists: inserting a new chunk and removing
a chunk by merging it with some neighbour. The fit policy requires to do a search in
the list. For the free list, the operations required by different policies exactly the same:
insertion and removing of a free chunk, searching for a fitting chunk. Moreover, these
basic operations may be implemented in different ways and their composition produces
the variety of policies and techniques discussed. Thus, by identifying how the methods
of the DMA are obtained from these basic operations, we could obtain different models
of the DMA only by refining the elementary operations. From the above observations
and our experience with refinement proofs, we extract the following principles of re-
finement:
R1 : Refinements of the heap list precede the ones of the free list.
R2 : Refinements of basic operations on heap (resp. free) list shall compose for the
same state modelling.
R3 : Refinements of the fit policy shall be done in the end.
R4 : Refinements concern basic operations on heap (resp. free) list.

We applied the above refinement principles to obtain a hierarchy of models, part of
it presented in Figure 3. This hierarchy mainly includes two layers called heap-list and
free-list. The heap-list layer contains three models specifying DMA with heap list and
lazy (MHL), eager (MHE), or absence of (MH) coalescing. The models in free-list
layer refined from heap-list by add free list, e.g. MUA specifies DMA using unsorted,
acyclic singly linked lists.

MHE

eager coalescing

MH

 no coalescing

MHL

 lazy coalescing

+ unsorted

+ acyclic SLL

MUA MSC

+ sorted

+ cyclic SLL

+ sorted

+ acyclic SLL

MSA

MUAD

+ DLL

MSAB

+ best fit

heap-list

free-list

IBM, DL-small TOPSY

KRDKBT, TLSF

DL-list
DKFF, LA

+ first fit

MSAF

DKNF

+ next fit

MSAN

DKBF

+ next fit

MSCNMUADB

+ best fit

Fig. 3. The hierarchy of models and case studies it covers

Actually, Figure 3 includes
only the the part of the hierar-
chy that covers our case stud-
ies, listed as labels of models.
However, the refinement rela-
tions we defined allows to ob-
tain more models.

We define formally the mod-
els and the refinement relations
in the next sections. Some read-
ers concerned by implementa-
tion details may get worried
about some design choices that
are not covered by the above
presentation, e.g. alignment of
start addresses for chunks, encoding of the free status of chunks in the header, the
unit on which the size of the chunk is measured, the fitting size. For them, we apply
the abstraction principle used in the model presented in Section 2.2, more precisely, we
define in Section 5 a signature S that abstract these low level design choices.

A Refinement Hierarchy for Free List Memory Allocators 9

2.6 Attainable Extensions

The hypothesis of fixed limit for the data segment managed by the DMA, limit repre-
sented by hli, may be easily relaxed in our framework by including hli in the abstract
state σ. This extension allows to specify precisely DMA implementations, e.g. IBM [4]
and KR [11], where the method init is absent and the method alloc extends the data
segment (using system calls) when the existing free chunks cannot satisfy a request.

The model MUADB may be further refined to specify precisely the policy proposed
in [18], which indexes free chunks in several lists depending on their size.

Our hierarchy is not suitable to model the buddy allocation technique, which uses a
tree organisation for the set of chunks.

3 Heap List Modelling

This section presents models of DMA using a heap list for the set of managed chunks.
We show that these models may be obtained by composing refinements of basic opera-
tions on heap lists. These refinements are mainly discriminated by their handling of the
chunk coalescing.

3.1 State and Invariants

The abstract state of a DMA using a heap list organisation of chunks is defined Table 3.
It includes the set of chunks H and the information stored in the chunk header, i.e.,
csz and cst (or equivalently F) defined in Table 1. In addition, it stores the successor
and predecessor relations between chunks, cnx resp. cpr . The mapping cpr is specified
only for doubly linked heap lists. In addition to invariants in Table 1, we introduce the
invariants I7 and I ′7 in Table 3 to characterise the two new relations. They assert that cnx
is a bijection, and if cpr is defined, it is the inverse of cnx. A consequence of invariants
I7–I8 is the following expected property:

Property 1. The heap list is acyclic, starts in hst, and ends in hli.

The invariant I9 asserts that a chunk occupies exactly the space between its start and
the next chunk, which leads to the following:

Property 2. A heap list satisfying I1–I9 has no memory leaks.

The invariant Iec is not satisfied by all heap lists, but we introduce it here for sake of
completeness. It asserts that two chunks, successive in the heap list, cannot be both
free and it is a state invariant (correctness criteria) for DMA using early coalescing.
Notice that Iec may be temporary broken during the execution of methods free and
realloc.

10 Bin Fang and Mihaela Sighireanu

Table 3. Refinement of A for heap list
State refinement

cnx : H → (H \ {hst}) ∪ {hli} next chunk total mapping
cpr : (H \ {hst}) ∪ {hli}→H previous chunk total mapping
σ , 〈H ,F , csz, cst, cnx, cpr〉 state of DMA with heap list

Additional invariants
I7 : cnx is a bijection I8 : hst ∈ H I9 : ∀c ∈ H · cnx(c) = c+ csz(c)

I ′7 : cpr = cnx−1 Iec : ∀c1, c2 ∈ H ·
(
cnx(c1) = c2

)
⇒ NAND(cst(c1), cst(c2))

3.2 Basic Heap List Operations

For a heap list organisation of H , the inference rules in Table 1 (in particular “AllocS”,
“AllocF ” and “FreeS”) fail to model the splitting of a fitting chunk or the merging of
adjacent free chunks in case of an allocation fail (in lazy coalescing) or free success
(in early coalescing). To define the specifications of heap-list based DMA methods, we
identified the following basic operations on the heap lists:

– hremove removes a free chunk (from F),
– hinsert inserts a free chunk (into F),
– hsplit splits a free chunk,
– hmergeN merges a free chunk with its near free neighbours,
– hmerge∀ merges all sequences of free chunks, and
– hsearch searches a fitting free chunk.

Tables 4–7 provides the specifications of these basic operations for singly linked heap
lists. For some operations, e.g., hsplit or hsearch, several refinements are shown. The
main methods of the DMA are specified in Table 8 using these basic operations. In this
section, we explain these specifications in detail. To simplify the presentation of rules,
we adopt the convention that the elements of state σ (the source state of the defined
rule) appear without the dotted notations.

Table 4 specifies operations hremove and hinsert. The state of the chunk c given
as parameter is updated accordingly.

Table 4. Refinement of remove/insert operations on heap list

hr
em

ov
e(
c)

hremove
c ∈ F

σ
hremove(c)−−−−−−→ σ[F ← F \ {c}, cst(c)← 0]

hi
ns

er
t(
c)

hinsert
c ∈ H \ F

σ
hinsert(c)−−−−−→ σ[F ← F ∪ {c}, cst(c)← 1]

The operation hsplit has as parameters a free chunk c and a natural n representing
the size of the new chunk to be created inside c; this new chunk is set as busy and
returned as result of hsplit. Notice that, this operation preserves the validity of the
invariant Iec because it sets one part of the split chunk to busy. Table 5 specifies two
tactics for hsplit (hsplitB and hsplitE) depending on the position of the chunk of size
n (at begin resp. end of c).

A Refinement Hierarchy for Free List Memory Allocators 11

Table 5. Refinement of split operation on heap list

hs
pl

it(
c,
n
)
:
c′

hsplitB

c ∈ F 0 < n ≤ csz(c) c′ = c+ n〈H ∪ {c′},F ,
csz[c← n, c′ ← csz(c)− n],
cnx[c← c′, c′ ← cnx(c)]

〉
= σ1

σ1
hremove(c)−−−−−−→ σ2

hinsert(c′)−−−−−−→ σ3

σ
hsplit(c,n):c−−−−−−−→ σ3

hsplitE

c ∈ F 0 < n ≤ csz(c) c′ = c+ csz(c)− n〈
H ∪ {c′}, F, cst(c′)← 0,
csz[c← csz(c)− n, c′ ← n],
cnx[c← c′, c′ ← cnx(c)]

〉
= σ1

σ
hsplit(c,s):c′−−−−−−−→ σ1

The operation hmerge is called in free or realloc to join two successive free
chunks in one. But a state with two successive free chunks does not comply with the
invariant Iec satisfied in states of DMA with early coalescing. Therefore, the invariant
Iec is broken temporarily in a state before hmerge. As discussed at the end of the
previous section, Iec is reestablished at the return from free or realloc.

The first behaviour of hmerge is hmergeR, defined in Table 6 by rules hmergeS
R

and hmergeF
R. The operation joins its parameter, a chunk b, with its successor c (also

right neighbour) if c is free; otherwise, the operation does nothing. For sake of symme-
try with the second behaviour, hmergeR returns its parameter. The second behaviour of
hmerge is hmergeL, defined by rules hmergeS

L and hmergeF
L . It joins its parameter

b with its predecessor c (also left neighbour), if c is free and returns the address of this
predecessor; otherwise, the operation returns b.

Table 6. Refinement of single merge operation on heap list

hm
er

ge
R
(b
)
:
x

hmergeS
R

b ∈ F c = cnx(b) c ∈ F σ
hremove(c)−−−−−−→ σ1

σ
hmergeR(b):b
−−−−−−−−→ σ1

H ← H \ {c},
csz[b← csz(b) + csz(c)],
cnx[b← cnx(c)]

 hmergeF
R

b ∈ F c = cnx(b) c ∈ H \ F

σ
hmergeR(b):b
−−−−−−−−→ σ

hm
er

ge
N
(b
)

hmergeS
N

b ∈ F σ
hmergeR(b):b
−−−−−−−−→ σ1

hmergeL(b):c
−−−−−−−−→ σ2

σ
hmergeN (b)
−−−−−−−→ σ2 hm

er
ge
∀

hmergeS
∀

b ∈ F σ
hmergeN (b)
−−−−−−−→ σ1

hmerge∀−−−−−→ σ2

σ
hmerge∀−−−−−→ σ2

The above operations are called by hmergeN and hmerge∀, which are specified
in Table ??. Operation hmergeN merges a free chunk b with its free neighbours. Op-
eration hmerge∀ merges any two successive free chunks in the entire memory region.
Rule hmergeF

∀ states property Iec is satisfied and it is the terminal point of hmerge∀.
The operation hmergeN will be used for eager coalescing policy, while hmerge∀ is
used for lazy coalescing policy.

Operation hsearch(n) looks through the heap list for a chunk fitting the requested
size n and returns a fitting free chunk or nil. Table 7 defines refinements of this op-
eration, hsearchFF and hsearchBF corresponding to the first-fit and best-fit policies.
Notice that the first fit is computed from the start of the heap list, i.e. hst.

3.3 Models for Heap List DMA

The specifications of main DMA methods (from Figure 1) make use of basic operations
presented above as follows.

12 Bin Fang and Mihaela Sighireanu

Table 7. Refinement of search operation on heap list

hs
ea

rc
h(
n
)
:
c

hsearchS
FF

c ∈ F fit(c, n) ≤ csz(c)
∀b ∈ F · b < c⇒ csz(b) < fit(b, n)

σ
hsearch(n):c−−−−−−−→ σ

hsearchF
∗F

∀b ∈ F · csz(b) < fit(b, n)

σ
hsearch(n):nil−−−−−−−−→ σ

The specification of the method init for all heap list models is given in section
hinit in Table 8. Notice that the rule refines the abstract rule init in Table 1 by adding
the information about the successor and predecessor of the initial chunk in the heap list.

The alloc method is refined to obtain two distinct behaviours: halloceager and
halloclazy for allocation without resp. with coalescing. Both of these behaviours call the
internal operation halloci, which does the main part of the work: it searches the free
chunk fitting the request using hsearch and returns this chunk after changing its status.
The rule hallocfit specifies the behaviour where the fitting chunk is not split; the rule
hallocsplit specifies the splitting operations. Notice that the first rule allows to define
models for allocation without splitting due to the use of the fit mapping which returns
always the size of the chunk if it fits the request. For halloclazy, i.e., allocation with
coalescing, there are two cases, specified by rules hallocSlazy and hallocS

′

lazy, depending
on the returnee of hsearch. Rule hallocSlazy states that allocator merges two continuous
free chunks when there is no big enough free chunk after searching (hsearch returns
nil). The rule hallocS

′

lazy is applied when hsearch returns a fitting free chunk.

Table 8. Refinements of methods for heap list

hi
ni

t(
) hinit

σ
hinit()−−−→

〈
H ← {hst}, F ← {hst},
cnx(hst)← hli, csz(hst)← hli− hst

〉

ha
llo

c i
(s
)
:
p

hallocSsplit

c 6= nil p = b+ chd fit(c, s) < csz(c) σ
hsearch(s):c−−−−−−−→ σ1

hsplit(c,fit(c,s)):b−−−−−−−−−−→ σ2

σ
halloci(s):p−−−−−−−→ σ2

ha
llo

c(
s)

:
p

halloceager
σ

halloci(s):p−−−−−−−→ σ1

σ
halloc(s):p−−−−−−→ σ1

hallocSlazy

σ
halloci(s):nil−−−−−−−→ σ1

hmerge∀−−−−−→ σ2
halloci(s):p−−−−−−−→ σ3

σ
halloc(s):p−−−−−−→ σ3

The specification of the method free is refined similarly to obtain its behaviours
for eager and lazy coalescing (see Appendix). We only show below the rule used for
early coalescing. It recuperates the invariant Iec by calling the merging of neighbours
of the freed chunk before the return of free:

hfreeS
eager

p = b+ chd b ∈ H \ F σ
hinsert(b)−−−−−→ σ1

hmergeN (b)
−−−−−−−→ σ2

σ
hfree(p):true−−−−−−−→ σ2

A Refinement Hierarchy for Free List Memory Allocators 13

We coded the above specifications in Event-B [1] and we proved with the Rodin
tool [2] and the connected solvers the following correctness theorem. Table 9 provides
statistics about size of the models and of proofs conducted to obtain their correctness.

Theorem 1. Every operation of the DMA model MH (resp. MHL and MHE) preserves
the invariants of the model.

Table 9. Invariants / rules used in models and Statistics on proving of models
Models init, alloc, free remove split search
MH hinit,halloceager,hfreelazy hremove hsplitB hsearchFF

MHL hinit,halloclazy,hfreelazy hremove hsplitB hsearchFF

MHE hinit,halloceager,hfreeeager hremove hsplitE hsearchFF

Model LOC Proof Automatically Interactive
Obligations discharged proofs

MH 114 39 27(69%) 12(31%)
MHL 176 8 8(100%) 0(0%)
MHE 183 82 58(70%) 24(30%)

3.4 Model-based Translation to C Code

The rules presented in the previous section provide an operational semantics of DMA
methods that we exploit to generate C code. Like in rules, the code of DMA meth-
ods calls basic operations on heap list, for which we provide several implementations,
following the rules presented for them. We illustrate these principles on the alloc
method because we presented almost all basic operations it uses. For model MHE, the
code of alloc is given by the rule halloceager which is translated into a call of the
halloci function whose code, provided in Figure 4, is obtained from the rules in Ta-
ble 8. The type hdr_t is a C structure having as fields the header informations. The
rules halloc∗lazy for alloc method in model MHL lead to the code in Figure 4.

The direct translation in C of two rules for hmerge∀ is a loop iterating over the
chunks in the free list, picking a free chunk with free neighbours, and doing the merge;
the loop stops when no merging is possible for any free chunk. For this, we add to the
C functions translating the rules for merging (hmergeN , hmergeL, and hmergeR) a
boolean parameter indicating if any successful merge has been applied (using any of
rules hmergeS

L or hmergeS
R). The interesting parts of the code generated is provided

in Figure 5. Notice that this translation is not the most efficient, but it follows closely
the rules given. The other basic operations are translated similarly.

1 void* halloc_i(size_t sz) {
2 hdr_t* c = hsearch(sz);
3 if (c == NULL) return NULL;
4 if (fit(c,sz) == csz(c)) {
5 hremove(c); return c+chd;
6 } else {
7 hdr_t* b = hsplit(c, fit(c,sz));
8 return b+chd;
9 }

10 }

1 void* alloc(size_t sz) {
2 void* p = halloc_i(sz);
3 if (p != NULL) return p;
4 else {
5 hmergeAll();
6 return halloc_i(sz);
7 }
8 }

Fig. 4. Code generated for alloc based on model MHL

14 Bin Fang and Mihaela Sighireanu

1 void hmergeAll() {
2 bool is_ec;
3 do {
4 is_ec = true;
5 for (hdr_t* c=hst; c<hli; c=cnx(c))
6 if (cst(c) == 1) { // c is free
7 bool done_merge = false;
8 hmergeN(c, &done_merge);
9 is_ec = is_ec && !is_merge;

10 }
11 } while (!is_ec);
12 }
13 void hmergeN(hdr_t* b, bool* done_merge) {
14 bool done_mergeR, done_MergeL;
15 hmergeR(b, &done_mergeR);
16 hmergeL(b, &done_mergeL);
17 *done_merge = done_mergeR||done_mergeL;
18 }

1 hdr_t* hmergeR(hdr_t* b, bool* done_merge) {
2 hdr_t* c = cnx(b);
3 if (cst(b) == 1 && cst(c) == 1) {
4 hremove(c);
5 csz_update(b, csz(b)+csz(c));
6 cnx_update(b, cnx(c));
7 *done_merge = true; return c;
8 } else {
9 *done_merge = false; return b;

10 }
11 }

Fig. 5. Code generated for hmerge∀ and hmergeN

4 Free List Modelling

Table 10. Impact of refinement steps

Values State Basic operations Methods
A fnxA fsearchA finitA
C fnxC , IC fsearchC finitC

U finsertU , fmergeU

S IS finsertS , fmergeS

D σD, Ifpr fremoveD, finsertD
fmergeD, fsplitD

finitD

F,B fsearchF , fsearchB

N σN , Irp fsearchN finitN , fallocN

This section defines the refinements ap-
plied to capture the different design
choices related with the use of a list for
the set of free chunks. Following the prin-
ciple R1, these refinements are applied
to models obtained by refinements of the
heap list. To simplify the presentation, we
provide only definitions for refinements
of the MHE model, i.e., model using a
heap list with early collapsing.

To conform to principle R4, we de-
fine a set of basic operations on free list.
These operations are the counterpart of the ones defined for the heap list in Section 3.2:
fremove, finsert, fsplit, fmergeN , fmerge∀, and fsearch. The refined models of the
DMA methods (in Figure 1) employ these basic operations similarly to the models for
heap list. We define four steps of refinement dealing with:

i. shape of the list, with values acyclic (A) and cyclic (C),
ii. ordering of chunks, with values unordered (U) and sorted (S),

iii. free cells linking, with values singly (default) and doubly (D),
iv. fit policy, with values first (F), best (B) and next (N) fit.

Each step adds new state elements, state invariants, or refinements of basic operations
and DMA methods. Table 10 sums up the impact of each step using the notations intro-
duced in the following.

4.1 States and Invariants

Table 11 defines the different states and the invariants used by the refinement steps.
Notice that a free list state extends a state of the heap list model. The linking of free

A Refinement Hierarchy for Free List Memory Allocators 15

Table 11. States and invariants used by free list refinements
Refined states

fbe, fen 6∈ H (constants used as flags)
fnxA : (F ∪ {fbe})→ (F ∪ {fen}) fprA : (F ∪ {fen})→ (F ∪ {fbe})
fnxC : (F ∪ {fbe, fen})→ (F ∪ {fbe, fen}) fprC : (F ∪ {fbe, fen})→ (F ∪ {fbe, fen})
σ , 〈H , F, csz, cst, cnx, fnx〉 σD , 〈H , F, csz, cst, cnx, fnx, fpr〉
σN , 〈H , F, csz, cst, cnx, fnx, rp〉

Additional invariants

Ifnx : fnx∗ total bijection Ifpr : fpr = fnx−1

I∅ : fnx∗(fbe) = fen ⇐⇒ F = ∅ I`s : ∀F ′ ⊆ F · F ′ ⊆ fnx−1∗ (F ′)⇒ F ′ = ∅
IC : fnxC(fen) = fbe Irp : F 6= ∅⇒ rp ∈ F
IS : ∀c ∈ F · fnx∗(fbe) ≤ c ≤ fnx−1∗ (fen) ∧ (fnx∗(c) = fen ∨ c < fnx∗(c))

chunks is modelled using the bijective mappings fnx and fpr specified by invariants Ifnx

and Ifpr. To capture easily all the shapes of the free lists in our modelling framework,
we use two constants, fbe and fen, not chunks in H , which delimit the start resp. target
(end) of the free list. (We provide intuition for free list in Figure B.3 of the Appendix.)
Indeed, by using these flags, we could employ the invariant I`s for both cyclic and
acyclic lists to ensure the following property:

Property 3. If a state satisfies Ifnx, I∅ (and IC), and I`s then fnx defines an acyclic
(resp. cyclic) list starting in fnx(fbe) and including all free chunks.

Notice that reachability is a second order property. I`s is a manner to express this prop-
erty, inspired by [1]; it states that fnx does not define a clique inside F . This is the only
place where we need a second order property.

For tools with support limited to first-order logic, I`s may be replaced by a first order
one if the free list is address sorted, property specified by the invariant IS . Indeed, the
following property is a corollary of fnx being total, bijective and strictly increasing:

Property 4. If a state satisfies Ifnx, I∅ (and IC), and IS then fnx defines an acyclic (resp.
cyclic) list starting in fnx(fbe) and including all free chunks.

For models using unsorted free lists, we use the invariant I`s. For the case studies
in Table 2, these models are mainly using doubly linked free lists. Fortunately, Rodin
provides means for proving second order logic properties on sets.

The variable rp is used by the state σN modelling the next fit policy to mark the last
used free chunk.

16 Bin Fang and Mihaela Sighireanu

4.2 Basic Operations

Table 12. Refinement of basic operations on free list

fre
m

ov
e(
c)

fremoveA
c ∈ F

σ
fremove(c)−−−−−−→ σ

[
F ← F \ {c}, cst(c)← 0, fnx(fnx−1(c))← fnx(c)

]

fin
se

rt
(c
) finsertBU

c ∈ H \ F

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(fbe)← c, fnx(c)← fnx(fbe)

]
finsertBS

c ∈ H \ F ∀b ∈ F · c < b

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(fbe)← c, fnx(c)← fnx(fbe)

]

fs
ea

rc
h(
n
)
:
c

fsearchS
FF

c ∈ F fit(c, n) ≤ csz(c)∀b ∈ F · b < c⇒ csz(b) < fit(b, n)

σ
fsearch(n):c−−−−−−−→ σ

fsearchF
∗

∀b ∈ F · csz(b) < fit(b, n)

σ
fsearch(n):nil−−−−−−−→ σ

To fix the parallel between the basic operations in heap and free lists, we provide the
operations for free chunk removing, insertion and searching in Table 12. (The full spec-
ification of free list operations is given in Appendix B.)

Operation fremove for acyclic free list extends hremove by updating the relation
fnx. For insertion in an unsorted free list, rules finsertB and finsertE specify the tactics
of inserting at the start resp. end of the list. For a free list ordered by the start addresses
of chunks, rules for finsertS(c) search for the free chunk just before c: it can be at the
start of the list or in the middle. It is obvious that fsearch refines hsearch for the first
fit and best fit policies. The next fit policy uses the variable rp to start the search of the
fitting chunk.

4.3 Models for Free List DMA

We developed several models refining the free list, including the models in Figure 3.
The DMA methods are specified in a way very similar to the one used for heap lists, as
could be seen on Table 13 for the methods init and free of the model MSA. The
rule ffreeS

eager uses the operation finsert (instead of hinsert) to update the links used by
the free list and then tries to merge the inserted chunk with its neighbours. Notice that
the merging operation has a simpler formulation when the free lists are doubly linked.

Table 14 provides the main ingredients used by the refinement to obtain the models
presented in Figure 3. Like for the heap list models, we prove with the Rodin tool the
following correctness and refinement theorem. Table 14 provides statistics about models
and proofs conducted to obtain the below theorem.

A Refinement Hierarchy for Free List Memory Allocators 17

Table 13. Refinement of methods for free list

fin
it(
)

finitA
c ∈ F

σ
finitA()−−−−→

〈
H ← {hst}, F ← {hst}, cnx(hst)← hli, csz(hst)← hli− hst, fnx(hst)← nil

〉
ffr

ee
(p
)
:
t

ffreeS
eager

p = b+ chd b ∈ H \ F σ
finsert(b)−−−−−→ σ1

fmergeN (b)
−−−−−−−→ σ2

σ
ffree(p):true−−−−−−−→ σ2

ffreeS
lazy

p = b+ chd b ∈ H \ F σ
finsert(b)−−−−−→ σ1

σ
ffree(p):true−−−−−−−→ σ1

ffreeF
∗

∀b ∈ H \ F · p 6= b+ chd

σ
ffree(p):false−−−−−−−→ σ

Table 14. Invariants / rules used in models and Statistics on proving of models

Models State&Inv. init remove search
MUA σ finitA fremoveA fsearchBF

MSA σ, IS finitA fremoveS fsearchBF

MSCN σ, IC , IS , Irp finitC fremoveS fsearchNF

MUADB σD, Ifpr finitD fremoveD fsearchBF

MSAB σ, IS finitA fremoveS fsearchBF

MSAF σ, IS finitA fremoveS fsearchFF

MSAN σN , IS , Irp finitN fremoveS fsearchNF

Model LOC Proof Automatically Interactive
Obligations discharged proofs

MUA 219 36 30(83%) 6(17%)
MSA 197 41 27(66%) 14(34%)
MUC 205 37 30(82%) 7(18%)
MSCN 194 40 36(88%) 4(12%)
MUADB 241 9 9(100%) 0(0%)
MSAB 202 2 2(100%) 0(0%)
MSAF 202 2 2(100%) 0(0%)
MSAN 200 2 2(100%) 0(0%)

Theorem 2. Every operation of a model for DMA with free list preserves the invariants
of the model. Moreover, the refinement relations in Figure 3 are valid.

4.4 Model-based Translation to C Code

We use principles similar to heap list in order generate code from the models. As ex-
pected, sorted (cyclic or acyclic) free list are well adapted for merging operations.

We observe that low level code (e.g., pointer arithmetics) is concentrated on basic
operations for splitting or merging free chunks. Therefore, software verification tools
without support for such low level code should (i) either focus on code generated for
models without coalescing or chunk splitting (e.g., ones derived from MH), (ii) or ab-
stract these operations to high level behaviour.

5 Refinement towards DMA Implementations

This section presents how to refine the models defined in the previous sections to obtain
specifications for real code, including our case studies.

In our models, the constants and state elements abstract the following implementa-
tion details: the boundaries of the memory region used by the DMA (variables hst and
hli), the type of the header (constants chd, cal, mappings csz, cst, cnx, cpr , fnx, fpr),
the algorithm deciding which is the number of bytes needed to satisfy a client request
(mapping fit), and the boundaries of the free list (variables fbe and flst). Let S denote
the above set of symbols.

The refinement to code relation is defined by the instantiation of each element in S
by an expression using the types and variables of the DMA implementation such that
the semantics of the element is fulfilled. We provide two examples of such refinement

18 Bin Fang and Mihaela Sighireanu

relations in Table 15. Notice that some elements of S may be left unspecified (denoted
by ‘−’) if they are not used in the model (we omit the elements of S which are not
specified in both examples). For example, the model MSA (using early coalescing and
acyclic sorted free list) does not use the mappings heap previous cpr and free previous
fpr. Therefore, the refinement relation provided for LA [3] does not use them. The re-
finement relations for every benchmark are provided in Appendix C. We obtain these
refinement do code relations by inspecting the code of each allocator. However, we be-
lieve that some automatic analysis may be designed to extract some of this information.
In all cases, the expression provided for some element of S shall be checked to ensure
that it satisfies the typing constraints of its definition.

Table 15. Examples of refinement to code
S TOPSY [8] |= MHL LA [3] |= MSAFF KR [11] |= MSCFF

hst start _hsta &begin
hli end sbrk(0) sbrk(0)
chd sizeof(HmEntryDesc) sizeof(HDR) sizeof(Header)
cal 4 sizeof(HDR) sizeof(Header)
csz(x) (long)x->next-(long)x x->size*sizeof(HDR) x->s.size*sizeof(Header)
cst(x) x->status − −
cnx(x) x->next (HDR*)x+x->size (Header*)x + x->s.size
fnx − x->ptr x->s.ptr
fbe − frhd freep
fit(c, n) (csz >((n+3)&0x0F+8))? (n+3)/4 + 1 (n+3)/4 + 1

((n+3)&0x0F)):csz

For model-based code generation, the elements of S are provided as C macro-
definitions. We also generate code for the updating of each element, e.g., csz_update
used in Figure 5.

6 Additional Applications

In the previous sections, we illustrated the application of our hierarchy of models to
model-based code generation for free list DMA. We survey in this section other appli-
cations of our work for formal verification and monitoring.

Model-based testing We experimented model-based test case generation using the
tool [16] which implements several methods for Event-B models. We focused on the
generation of test cases that are finite sequences of calls to alloc and free and end
in a fail behaviour of free.

A first observation concerns the scalability of this tool, which is not related with
its particular implementation, but with the methodology it employs, which is based on
queries to SMT-solvers. We are able to generate test cases for models which are on top
of our hierarchy in Figure 3. The models in the lower part, which have more complex
invariants, cannot be dealt by the theories available in the SMT-solvers connected with
this tool. We expect that this situation is reproduced in other model-based test case
generators using different input languages. Thus, our hierarchy is a solution for this
scalability problem because it provides reasonable size abstractions for the complex
models of free list DMA.

A Refinement Hierarchy for Free List Memory Allocators 19

A second observation is related with the concretisation of signature S to the code
under test. Not all the elements of S shall be instantiated to apply the tool: only the
mappings csz and fit shall be fixed, mainly because they are important for inferring the
parameters for calls to alloc. The remaining elements of S can be dealt in a symbolic
way by the tool.

Run-time verification In our case studies, we observed a common practice of DMA
implementers which consists on coding methods checking that the heap list and the
free list are well formed, e.g., chunks are separated, or all chunks flagged as free are
registered in the free list. A systematic application of this practice leads to executable
specifications for the invariants and the pre/post conditions of DMA methods. We ex-
plore this direction by translating manually in C code the state invariants presented in
Tables 1, 3, and 11. For example, the code generated for the invariant IS is:

for (c=fnx(fbe), i=0; c!=fen && i<MAX; c=fnx(c), i++)
if (fnx(c)==fen || c<fnx(c)) continue;
else error();

Notice the use of the counter to avoid infinite iteration due to a bad shape of the list.
The manual translation of invariants is not a difficult task because these invariants are
shared between models. Moreover, the use of the abstract signature S has the advantage
to change easily the code for a particular implementation of DMA state. Of course,
for sequential DMA, the run time monitoring we propose deprecates the DMA perfor-
mances, so its use is limited test to validation phases.

We used this code to monitor the code we generated from models and the case
studies we implemented, e.g. DKBT or DKBF. An interesting problem, which is out
of the scope of this paper, is the automatic generation of this code, especially for the
pre/post-conditions of DMA methods. Existing techniques for code generation from
Event-B models, e.g. [9], consider a limited fragment of the modelling language, e.g.,
they do not translate properties like total bijection needed by fnx.

Static analysis Several static analysis techniques have been proposed to analyse DMA
code (see related work). Due to the use of complex abstract domains, they are able
to capture precise properties of DMA, e.g., shape of the lists including the overlapping
between heap and free list. These domains are based on second order logics over graphs
(to encode reachability), e.g., Separation Logic [19]. Ideally, these tools shall be able to
infer the invariants and the pre/post-conditions of DMA methods. Therefore, our work
may be exploited to provide the abstract model which fits the code analyzed. Moreover,
our formal models of DMA indicate the kind of logic fragments needed to capture
precisely the properties of DMA and thus is a source of inspiration for the design of
more precise abstract domains.

7 Related Work and Conclusion

To our knowledge, this work is the first defining a hierarchy of models for the full class
of list-based DMA. The work in [21] also does a top-down modelling but only to obtain
the formal specification of the TLSF DMA [18]. They apply ten refinement steps and

20 Bin Fang and Mihaela Sighireanu

use also Event-B for a DMA with a fixed size region. The most refined specification is
used to (manually) generate code and to verify it using VCC. We are providing specifi-
cation for a larger class of DMA, but we are not concerned by the code generation from
our models; moreover, some modelling choice, e.g., use of basic operations on lists are
different from ours.

Several projects report on the mechanical proofs of (partial) correctness of a specific
memory allocator using theorem provers, e.g., [17,22,12,10,6]. [17] reports on a first at-
tempt to verify the TOPSY DMA using the Coq theorem prover. For this, they developed
a Coq library for the Separation Logic (SL) [19] and specify mainly the invariants of the
heap list in this logic. The verification process revealed some bugs (issued from pointer
arithmetics) of previous versions of this implementation. Although SL is very good to
express properties like absence of chunk overlapping or memory leaks, it is not enough
to specify some properties related with the content of the list, e.g., the fitting policy.

[22] proposes a formal memory model that captures both low level and abstract level
of the memory organisation. The low level model is based on some set theory available
in the prover language; the abstract level uses SL. The proof of abstract correctness
properties are then either done at the abstract level for some operations using the proof
assistant Isabelle/HOL or lifted automatically to the low level for low level operations.
The approach was used to formally verify the memory allocator of the L4 microkernel
and in the seL4 project [12]. Our work is complementary to this project: our specifica-
tions provide insights on the theories needed to cover other DMA and more complex
properties.

The Bedrock framework [6] is a Coq library that allows to verify abstract specifica-
tions in SL over assembly and low level code. It has been applied to verify a free list
based memory allocator with acyclic free list and without coalescing which is also spec-
ified in our hierarchy. The library includes the lemmas needed to automatically obtain
the proof of the code.

Several works concern the static analysis of memory allocators [5,15,7]. They are
design to infer properties of some allocators, e.g., DKFF, DKBF, DKNF, and KR
for [5,7] and Minix 1.1 for [15]. These properties belong to SL or to some logic over
arrays which are not expressive enough alone to cover fully the invariants of the DMA
analysed (e.g., the fit policy). [7] proposes an analysis based on abstract interpretation
using domains based on SL that is able to infer some invariants proposed in our models,
e.g., IS .

Conclusion: We propose an original methodology based on refinement to obtain first-
order specifications for a large class of DMA implementations, i.e., list-based DMA.
We apply this methodology and obtain a hierarchy of models that may be concretised
to obtain new models and models for existing DMA implementations. We prove the
correctness of the models in this hierarchy and of the refinement relation. We show that
this hierarchy is useful to obtain code for new combination of DMA policies or to help
tools for formal verification and monitoring targeting this class of DMA.

A Refinement Hierarchy for Free List Memory Allocators 21

References

1. J.-R. Abrial. Modeling in Event-B: system and software engineering. Cambridge University
Press, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin: an open
toolset for modelling and reasoning in event-b. International journal on software tools for
technology transfer, 12(6):447–466, 2010.

3. L. Aldridge. Memory allocation in C. Embedded Systems Programming, pages 35–42,
August 2008.

4. J. Bartlett. Inside memory management. http://www.ibm.com/developerworks/
library/l-memory/sidefile.html, 2004.

5. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability: Shape abstrac-
tion in the presence of pointer arithmetic. In SAS, volume 4134 of LNCS, pages 182–203.
Springer, 2006.

6. A. Chlipala. Mostly-automated verification of low-level programs in computational separa-
tion logic. In PLDI, pages 234–245. ACM, 2011.

7. B. Fang and M. Sighireanu. Hierarchical shape abstraction for analysis of free-list memory
allocators. In LOPSTR, LNCS. Springer, 2016.

8. G. Fankhauser, C. Conrad, E. Zitzler, and B. Plattner. Topsy – A Teachable Operating
System. Technical report, Computer Engineering and Networks Laboratory, ETH Zürich,
Switzerland, 2000.

9. A. Fürst, T. S. Hoang, D. Basin, K. Desai, N. Sato, and K. Miyazaki. Code generation for
event-b. In iFM, pages 323–338. Springer, 2014.

10. C. Hawblitzel and E. Petrank. Automated verification of practical garbage collectors. In
POPL, pages 441–453. ACM, 2009.

11. B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition. Prentice-
Hall, 1988.

12. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: formal veri-
fication of an OS kernel. In SOSP, pages 207–220. ACM, 2009.

13. D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd
Edition. Addison-Wesley, 1973.

14. D. Lea. dlmalloc. ftp://gee.cs.oswego.edu/pub/misc/malloc.c, 2012.
15. J. Liu and X. Rival. Abstraction of arrays based on non contiguous partitions. In VMCAI,

volume 8931 of LNCS, pages 282–299. Springer, 2015.
16. Q. A. Malik, J. Lilius, and L. Laibinis. Model-based testing using scenarios and Event-B

refinements. In Methods, Models and Tools for Fault Tolerance, pages 177–195. Springer,
2009.

17. N. Marti, R. Affeldt, and A. Yonezawa. Formal verification of the heap manager of an
operating system using separation logic. In ICFEM, volume 4260 of LNCS, pages 400–419.
Springer, 2006.

18. M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A new dynamic memory allocator for
real-time systems. In ECRTS, pages 79–86. IEEE Computer Society, 2004.

19. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In CSL, LNCS, pages 1–19. Springer, 2001.

20. D. R. Smith and M. R. Lowry. Algorithm theories and design tactics. Science of Computer
Programming, 14(2):305 – 321, 1990.

21. W. Su, J. Abrial, G. Pu, and B. Fang. Formal development of a real-time operating system
memory manager. In ICECCS, pages 130–139. IEEE, 2015.

http://www.ibm.com/developerworks/library/l-memory/sidefile.html
http://www.ibm.com/developerworks/library/l-memory/sidefile.html
ftp://gee.cs.oswego.edu/pub/misc/malloc.c

22 Bin Fang and Mihaela Sighireanu

22. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In POPL, pages
97–108. ACM, 2007.

23. P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A survey
and critical review. In IWMM, volume 986 of LNCS, pages 1–116. Springer, 1995.

A Heap List Modeling

A.1 Rules of basic operations in heap-list

Table 16. Refinements of remove/insert operations on heap list

hr
em

ov
e(
c)

hremove
c ∈ F

σ
hremove(c)−−−−−−→ σ[F ← F \ {c}, cst(c)← 0]

hi
ns

er
t(
c)

hinsert
c ∈ H \ F

σ
hinsert(c)−−−−−→ σ[F ← F ∪ {c}, cst(c)← 1]

Table 17. Refinements of split operation on heap list

hs
pl

it(
c,
n
)
:
c′ hsplitB

c ∈ F 0 < n < csz(c) c′ = c+ n〈
H ∪ {c′},F , csz[c← n, c′ ← csz(c)− n],
cnx[c← c′, c′ ← cnx(c)]

〉
hremove(c);hinsert(c′)−−−−−−−−−−−−→ σ1

σ
hsplit(c,n):c′−−−−−−−→ σ1

hsplitE
c ∈ F 0 < n < csz(c) c′ = c+ csz(c)− n

σ
hsplit(c,s):c′−−−−−−−→

〈
H ∪ {c′}, F, cst(c′)← 0,
csz[c← csz(c)− n, c′ ← n], cnx[c← c′, c′ ← cnx(c)]

〉

A Refinement Hierarchy for Free List Memory Allocators 23

Table 18. Refinements of merge operation on heap list

hm
er

ge
(b
)
:
x

hmergeS
R

b ∈ F c = cnx(b) c ∈ F〈
H \ {c},F , cnx[b← cnx(c)], csz[b← csz(b) + csz(c)]

〉 hremove(c)−−−−−−→ σ1

σ
hmerge(b):b−−−−−−−→ σ1

hmergeF
R

b ∈ F c = cnx(b) c ∈ H \ F

σ
hmerge(b):b−−−−−−−→ σ

hmergeS
L

b ∈ F cnx(c) = b c ∈ F〈
H \ {b},F , csz[b← csz(b) + csz(c)], cnx[b← cnx(c)]

〉 hremove(b)−−−−−−→ σ1

σ
hmerge(b):c−−−−−−−→ σ1

hmergeF
L

b ∈ F cnx(c) = b c ∈ H \ F

σ
hmerge(b):b−−−−−−−→ σ

hm
er

ge
N
(b
)

hmergeS
N

b ∈ F σ
hmergeR(b):b
−−−−−−−−→ σ1 σ1

hmergeL(b):c
−−−−−−−−→ σ2

σ
hmergeN (b):b | c
−−−−−−−−−−→ σ2

hm
er

ge
∀ hmergeS

∀
b ∈ F σ

hmergeN (b)
−−−−−−−→ σ1 σ1

hmerge∀−−−−−→ σ2

σ
hmerge∀−−−−−→ σ2

hmergeF
∀

Iec

σ
hmerge∀−−−−−→ σ

24 Bin Fang and Mihaela Sighireanu

Table 19. Refinements of search operations on heap list

hs
ea

rc
h(
n
)
:
c

hsearchS
FF

c ∈ F fit(c, n) ≤ csz(c) ∀b ∈ F · b < c⇒ csz(b) < fit(b, n)

σ
hsearch(n):c−−−−−−−→ σ

hsearchS
BF

c ∈ F fit(c, n) ≤ csz(c)
∀b ∈ F · (c 6= b ∧ fit(b, n) ≤ csz(b))⇒ (csz(b)− fit(b, n) ≥ csz(c)− fit(c, n))

σ
hsearch(n):c−−−−−−−→ σ

hsearchF
∗F

∀b ∈ F · csz(b) < fit(b, n)

σ
hsearch(n):nil−−−−−−−−→ σ

Table 20. Refinements of remove/insert operations on heap list

hr
em

ov
e(
c)

hremove
c ∈ F

σ
hremove(c)−−−−−−→ σ[F ← F \ {c}, cst(c)← 0]

hi
ns

er
t(
c)

hinsert
c ∈ H \ F

σ
hinsert(c)−−−−−→ σ[F ← F ∪ {c}, cst(c)← 1]

hs
pl

it(
c,
n
)
:
c′

hsplitB

c ∈ F 0 < n ≤ csz(c) c′ = c+ n〈H ∪ {c′},F ,
csz[c← n, c′ ← csz(c)− n],
cnx[c← c′, c′ ← cnx(c)]

〉
hremove(c);hinsert(c′)−−−−−−−−−−−−→ σ1

σ
hsplit(c,n):c′−−−−−−−→ σ1

hsplitE
c ∈ F 0 < n ≤ csz(c) c′ = c+ csz(c)− n

σ
hsplit(c,s):c′−−−−−−−→

〈H ∪ {c′}, F,
csz[c← csz(c)− n, c′ ← n],
cnx[c← c′, c′ ← cnx(c)]

〉

hm
er

ge
(b
)
:
x

hmergeS
R

b ∈ F c = cnx(b) c ∈ F〈H \ {c},F ,
csz[b← csz(b) + csz(c)],
cnx[b← cnx(c)]

〉
hremove(c)−−−−−−→ σ1

σ
hmerge(b):b−−−−−−−→ σ1

hmergeF
R

b ∈ F c = cnx(b) c ∈ H \ F

σ
hmerge(b):b−−−−−−−→ σ

hmergeS
L

b ∈ F cnx(c) = b c ∈ F〈H \ {b},F
csz[b← csz(b) + csz(c)],
cnx[b← cnx(c)]

〉
hremove(b)−−−−−−→ σ1

σ
hmerge(b):c−−−−−−−→ σ1

hmergeF
L

b ∈ F cnx(c) = b c ∈ H \ F

σ
hmerge(b):b−−−−−−−→ σ

hm
er

ge
N
(b
)

hmergeS
N

b ∈ F σ
hmergeR(b):b
−−−−−−−−→ σ1 σ1

hmergeL(b):c
−−−−−−−−→ σ2

σ
hmergeN (b)
−−−−−−−→ σ2

hm
er

ge
∀

hmergeS
∀

b ∈ F σ
hmergeN (b)
−−−−−−−→ σ1 σ1

hmerge∀−−−−−→ σ2

σ
hmerge∀−−−−−→ σ2

hmergeF
∀

Iec

σ
hmerge∀−−−−−→ σ

hs
ea

rc
h(
n
)
:
c

hsearchS
FF

c ∈ F fit(c, n) ≤ csz(c)
∀b ∈ F · b < c⇒ csz(b) < fit(b, n)

σ
hsearch(n):c−−−−−−−→ σ

hsearchS
BF

c ∈ F fit(c, n) ≤ csz(c)
∀b ∈ F · (c 6= b ∧ fit(b, n) ≤ csz(b))
⇒(csz(b)− fit(b, n) ≥ csz(c)− fit(c, n))

σ
hsearch(n):c−−−−−−−→ σ

hsearchF
∗F

∀b ∈ F · csz(b) < fit(b, n)

σ
hsearch(n):nil−−−−−−−−→ σ

A Refinement Hierarchy for Free List Memory Allocators 25

Table 20 specifies operations hremove and hinsert. The state of the chunk c given as
parameter is updated accordingly.

The operation hsplit has as parameters a free chunk c and a natural n representing
the size of the new chunk to be created inside c; this new chunk is set as busy and
returned as result of hsplit. Notice that by creating a new busy chunk, this operation
preserves the validity of the invariant Iec. Table 17 includes two distinct specifications
for hsplit: hsplitB and hsplitE for the creation of the new chunk at start resp. end of the
chunk c.

The operation hmerge is called in free or realloc to join two successive free
chunks in one. But a state with two successive free chunks does not comply with the
invariant Iec satisfied in states of DMA with early coalescing. Therefore, the invariant
Iec is broken temporarily in a state before hmerge.

The first behaviour of hmerge is hmergeR, defined in Table 18 by rules hmergeS
R

and hmergeF
R. The operation joins its parameter, a chunk b, with its successor c (also

right neighbour) if c is free; otherwise, the operation does nothing. For sake of symme-
try with the second behaviour, hmergeR returns its parameter. The second behaviour of
hmerge is hmergeL, defined by rules hmergeS

L and hmergeF
L . It joins its parameter

b with its predecessor c (also left neighbour), if c is free and returns the address of this
predecessor; otherwise, the operation returns b.

The above operations are called by hmergeN and hmerge∀. Operation hmergeN

merges a free chunk b with its free neighbours. Operation hmerge∀ merges any two
successive free chunks in the entire memory region. Rule hmergeF

∀ states property Iec
is satisfied and it is the terminal point of hmerge∀. The operation hmergeN will be
used for eager coalescing policy, while hmerge∀ is used for lazy coalescing policy.

The search of a fitting chunk in a heap list is done using operation hsearch, shown
In Table 19, which receives the requested size and returns a fitting free chunk or nil. We
define refinements of this operation, hsearchFF (resp. hsearchBF) for first-fit (resp.
best-fit) policy.

A.2 Rules of methods in heap-list

The rule for method init in heap-list level is hinit shown in Table 21, which initializes
the memory state. It refines abstract rule init in Table 1. In the initial memory state,
the set of heap chunks has only one chunk which represents the whole memory region
and is identified as hst. The size of hst is fixed and the next chunk of hst is hli.

Operation halloci has as parameter a request size s and returns a suitable chunk
represented by b. It defined by two rules hallocfit and hallocsplit. Operation hallocfit
allocates the exact suitable free chunk while hallocsplit splits a big chunk into two parts
and allocates one.

The alloc in abstract specification is refined by two rules, halloceager and halloclazy,
representing allocation with eager coalescing and lazy coalescing respectively. Both of
them have a request size parameter (s), a return value (b) and call the internal operation
halloci.

As to lazy coalescing policy, there are two cases, specified by hallocSlazy and hallocS
′

lazy,
which depend on the returnee of hsearch. Rule hallocSlazy states that allocator merges

26 Bin Fang and Mihaela Sighireanu

Table 21. Refinements of init and alloc on heap list

hi
ni

t
hinit

c ∈ F

σ
hinit(c)−−−−→

〈
H ← {hst}, F ← {hst}, cnx(hst)← hli, csz(hst)← hli− hst

〉
ha

llo
c i
(s
)
:
b

hallocSfit

c ∈ F c 6= nil fit(c, s) = csz(c) p = c+ chd σ
hsearch(s):c−−−−−−−→ hremove(c)−−−−−−→ σ2

σ
halloci(s):p−−−−−−−→ σ2

hallocSsplit

c ∈ F c 6= nil fit(c, s) < csz(c) p = b+ chd σ
hsearch(s):c−−−−−−−→ hsplit(c,fit(c,s)):b−−−−−−−−−−→ σ2

σ
halloci(s):p−−−−−−−→ σ2

hallocFi
σ

hsearch(s):nil−−−−−−−−→ σ′

σ
halloci(s):nil−−−−−−−→ σ′

ha
llo

c(
s)

:
b

halloceager
σ

halloci(s):p−−−−−−−→ σ1

σ
halloc(s):p−−−−−−→ σ1

hallocSlazy

σ
halloci(s):nil−−−−−−−→ σ1

hmerge∀−−−−−→ σ2
halloci(s):p−−−−−−−→ σ3

σ
halloc(s):p−−−−−−→ σ3

hallocS
′

lazy

σ
halloci(s):p−−−−−−−→ σ1 p 6= nil

σ
halloc(s):p−−−−−−→ σ1

hallocFlazy

σ
hmerge∀−−−−−→ σ1 σ1

halloci(s):nil−−−−−−−→ σ2

σ
halloc(s):nil−−−−−−−→ σ2

two continuous free chunks when there is no big enough free chunk after searching
(hsearch returns nil). The rule hallocS

′

lazy is applied when hsearch returns a fitting free
chunk.

In Table 22, we defined rules for method realloc. There are seven cases represent
different procedures of realloc.

The rule for method free is specified by hfree, shown in Table 23. It includes two
behaviors hfreeeager and hfreelazy for two coalescing policies. The behavior of hfreeeager

includes rules hfreeS
eager and hfreeF

eager, which means that we free a chunk successfully
if the parameter is valid and do nothing if the parameter is not valid.

To satisfy property Iec for DMA with eager coalescing policy, we should pay atten-
tion to changing statuses of chunks. The operation hmerge merges two free successive
chunks in our specifications. Thus, we need to change the status of the chunk to be re-
leased by operation hinsert then do hmergeN operation. Notice that operation hinsert
is called in hfreeS

eager to change the status of chunk b. In this way, Iec cannot be satisfied
in state σ1 of rule hfreeS

eager. We can only ensure that Iec is satisfied after method hfree.
An alternative way is to remove the free neighbor of chunk b from free list firstly, then
we merge the free neighbor with b together. Property Iec will be satisfied at any inter-
mediate steps of method hfree. Therefore, we need to specify that operation hmerge
merges two ’busy’ chunks. However, the state ’busy’ is a fake state. It doesn’t mean
that the ’busy’ chunk is the allocated one, and the merge operation doesn’t touch the
contents stored inside the chunks.

A Refinement Hierarchy for Free List Memory Allocators 27

Table 22. Refinements of realloc method on heap list

hr
ea

llo
c(
p
,n

)
:
q

hreallocS1
b ∈ H \ F n > 0p = b+ chd fit(b, n) = csz(b)

σ
hrealloc(p,n):p−−−−−−−−−→ σ

hreallocS2

b ∈ H \ F n > 0 p = b+ chd cnx(b) = c c ∈ F fit(b, n) > csz(b)

fit(c, n− csz(b)) <= csz(c) σ
hmergeR(b):b
−−−−−−−−→ σ1

hsplitB(b,fit(b,n)):b′−−−−−−−−−−−−→ σ2

σ
hrealloc(p,n):p−−−−−−−−−→ σ2

hreallocS3

b ∈ H \ F n > 0 p = b+ chd cnx(b) = c c ∈ F

fit(c, n− csz(b)) > csz(c) fit(b, n) > csz(b) σ
halloc(n):q−−−−−−→ σ1

hfree(p):true−−−−−−−−→ σ2

σ
hrealloc(p,n):q−−−−−−−−−→ σ2

hreallocS4

b ∈ H \ F n > 0 p = b+ chd cnx(b) = c

c ∈ H \ F fit(b, n) > csz(b) σ
halloc(n):q−−−−−−→ σ1

hfree(p):true−−−−−−−−→ σ2

σ
hrealloc(p,n):q−−−−−−−−−→ σ2

hreallocS5
n > 0 p = null σ

halloc(n):q−−−−−−→ σ1

σ
hrealloc(p,n):q−−−−−−−−−→ σ1

hreallocS6
n = 0 σ

halloc(bmin):q−−−−−−−−→ σ1
hfree(p):true−−−−−−−−→ σ2

σ
hrealloc(p,n):q−−−−−−−−−→ σ2

hreallocS7
n > 0 p = b+ chd b ∈ H \ F fit(b, n) < csz(b) σ

hinsert(b)−−−−−→ σ1
hsplitB(b,fit(b,n)):b−−−−−−−−−−−→ σ2

σ
hrealloc(p,n):q−−−−−−−−−→ σ2

hreallocF
p ∈ F

σ
hrealloc(p,n):nil−−−−−−−−−→ σ

B Free List Modeling

B.1 Formalize acyclic unsorted free list (MUA, MUAD)

Singly-linked list To formalize the free list, we define a map (relation) to present the
link-relation between free chunks. For acyclic free list, we define invariants shown as
follows:

inv1 : fnx ∈ F ∪ {fbe}�� F ∪ {fen}
inv2 : ∀u · u ⊆ fnx−1[u]⇒ u = ∅

In the above invariants, the relation fnx specifying points-to is defined as a bijection. We
use two extra variables fbe and fen to specify the head and the end of free list. However,
fbe and fen are not free chunks. Invariant inv2 specifies that there is no loop in the free
list. Thus, we can avoid the error state, e.g., {fbe 7→ fen, n1 7→ n2, n2 7→ n3, n3 7→ n1}.

28 Bin Fang and Mihaela Sighireanu

Table 23. Refinements of free method on heap list

hf
re

e(
p
)
:
t

hfreeS
eager

p = b+ chd b ∈ H \ F σ
hinsert(b):b−−−−−−→ σ1 σ1

hmergeN (b):b
−−−−−−−−→ σ2

σ
hfree(p):true−−−−−−−−→ σ2

hfreeS
lazy

p = b+ chd b ∈ H \ F σ
hinsert(b)−−−−−→ σ′

σ
hfree(p):true−−−−−−−−→ σ′

hfreeF
∗

∀b ∈ H \ F · p 6= b+ chd

σ
hfree(p):false−−−−−−−−→ σ

fbe fen
fnx

n1 n3n2
fnx fnx fnx

Fig. 6. Shape of acyclic free list

For example, in the above figure, the state of fnx is {fbe 7→ n1, n1 7→ n2, n2 7→
n3, n3 7→ fen}. fnx(fen) is not defined because fen is not in the domain of fnx. We can
get the first free chunk of free list by fnx(fbe) and last free chunk by fnx−1(fen).

Doubly-linked list The backward points-to relation is specified by inv3 which is the
reverse of fnx. Thus, we can specify the doubly-linked acyclic list by combining inv1,
inv2 with inv3.

inv1 : fnx ∈ F ∪ {fbe}�� F ∪ {fen}
inv2 : ∀u · u ⊆ fnx−1[u]⇒ u = ∅
inv3 : fpr = fnx−1

Initial state The initial state of singly-linked acyclic unsorted free list is: < fnx ←
{fbe 7→ hst, hst 7→ fen} >. The unique free chunk is represented by hst. The initial state
of doubly-linked acyclic unsorted free list is: < fnx ← {fbe 7→ hst, hst 7→ fen}, fpr ←
{fen 7→ hst, hst 7→ fbe} >.

B.2 Formalize acyclic sorted free list (MSA,MSAB,MSAF)

As to acyclic sorted free list, based on fnx we defined above, we use extra invariants to
specify the list is in addressed order.

inv1 : fnx ∈ F ∪ {fbe}�� F ∪ {fen}
inv2 : ∀u · u ⊆ fnx−1[u]⇒ u = ∅
inv3 : fpr = fnx−1

inv4 : ∀c ∈ F · fnx(fbe) ≤ c ≤ fnx−1(fen)
∧(fnx(c) = fen ∨ c < fnx(c))

The invariant inv4 constraints the next free chunk which a free chunk c points to should
be bigger then c.

A Refinement Hierarchy for Free List Memory Allocators 29

fnx
n1

fbe fen
fnx fnx fnx

n3n2

Fig. 7. Shape of cyclic free list

B.3 Formalize cyclic sorted free list (MSC)

To formalize the cyclic sorted free list, we will have several cases if the cycle is arbitrary.
We specify the case shown in the figure above. The relation inv1 in B.1 is not enough,
because fbe should be also in the range of the relation. Thus, we define invariants for
cyclic sorted free:

inv1 : fnx ∈ F ∪ {fbe, fen}�� F ∪ {fbe, fen}
inv2 : ∀u · u ⊆ fnx−1[u]⇒ u = ∅
inv3 : ∀c ∈ F · fnx(fbe) ≤ c ≤ fnx−1(fen)

∧(fnx(c) = fen ∨ c < fnx(c))

Initial state The initial state of cyclic sorted free list is: < fnx ← {fbe 7→ hst, hst 7→
fen, fen 7→ fbe} >.

B.4 Rules of basic operations in free-list

In free-list level, operation fremove refines hremove of heap-list level. It has an as-
signment which updates fnx. The operation fremove has as parameter the chunk to be
removed. The state of this removed chunk changed to busy (as 0) and the link relation
(fnx) of free list are updated after fremove.

The operation finsert in free-list level, shown in Table 24, is the refinement of
hinsert. It has as parameter the chunk to be inserted. It defined by several rules be-
cause insertion position depends on the shape of the free list.

The operation fsearch refines hsearch and has a similar profile as hsearch, but
it iterates only the chunks in the free list. We show the operations with three kinds of
fit policies, fsearchBF, fsearchFF and fsearchNF. fsearchNF is for next-fit policy of
which the searching position is represented by rp.

The rest operations in free-list level refine corresponding operations in heap-list by
replacing the operations called with refined operations. For instance, hmerge opera-
tion calls hremove in heap-list while operation fmerge calls fremove in free-list level.
However, the operation fmergeS

R is a special case. In free-list level, the refined opera-
tion fmergeS

R will call one more operation finsert to insert the new merged free chunk
into free list.

B.5 Rules of methods in free-list

In Table 28, the rule for method init is specified by finit. The rule for method free is
specified by ffree. It includes two behaviors ffreeeager and ffreelazy for two coalescing

30 Bin Fang and Mihaela Sighireanu

Table 24. Refinements of remove/insert on free list

fre
m

ov
e(
c)

fremoveA
c ∈ F

σ
fremove(c)−−−−−−→ σ

[
F ← F \ {c}, cst(c)← 0, fnx(fnx−1(c))← fnx(c)

]
fremoveS

c ∈ F

σ
fremove(c)−−−−−−→ σ

[
F ← F \ {c}, cst(c)← 0, fnx(fnx−1(c))← fnx(c)

]
fremoveD

c ∈ F

σ
fremove(c)−−−−−−→ σ

[
F ← F \ {c}, cst(c)← 0, fnx(fnx−1(c))← fnx(c), fpr(fnx(c))← fpr(c)

]

fin
se

rt
(c
)

finsertBU
c ∈ H \ F

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(fbe)← c, fnx(c)← fnx(fbe)

]
finsertEU

c ∈ H \ F

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx−1(fen)← c, fnx(c)← fen

]
finsertBS

c ∈ H \ F ∀b ∈ F · c < b

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(fbe)← c, fnx(c)← fnx(fbe)

]
finsertMS

c ∈ H \ F b = max{b′ | b′ ∈ F ∨ b′ < c}

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(b)← c, fnx(c)← fnx(b)

]
finsertBD

c ∈ H \ F

σ
finsert(c)−−−−−→ σ

[
F ← F ∪ {c}, cst(c)← 1, fnx(fbe)← c,
fnx(c)← fnx(fbe), fpr(c)← fbe, fpr−1(fbe)← c

]

policies. The behavior of ffreeeager defined by two rules ffreeS
eager and ffreeF

eager, which
means that we free a chunk successfully if the parameter is valid and do nothing if the
parameter is not valid.

In Table 30, the behavior of ffreeS
lazy inserts a free chunk into free list directly and

doesn’t call merge operation. The rule ffreeF
lazy has the same definition as rule ffreeF

eager.
The rules for alloc in free-list have similar profiles as halloc in heap-list, but they

call basic operations of free-list.

A Refinement Hierarchy for Free List Memory Allocators 31

Table 25. Refinements of split operation on free list

fs
pl

it(
c,
n
)
:
c′

fsplitB

c ∈ F 0 < n ≤ csz(c) c′ = c+ n〈
H ∪ {c′},F , csz[c← n, c′ ← csz(c)− n], cnx[c← c′, c′ ← cnx(c)]

〉 fremove(c);finsert(c′)−−−−−−−−−−−−→ σ1

σ
fsplit(c,n):c′−−−−−−−→ σ1

fsplitE
c ∈ F 0 < n ≤ csz(c) c′ = c+ csz(c)− n

σ
fsplit(c,s):c′−−−−−−−→

〈
H ∪ {c′}, F, csz[c← csz(c)− n, c′ ← n], cnx[c← c′, c′ ← cnx(c)]

〉

C Refinement to implementation

32 Bin Fang and Mihaela Sighireanu

Table 26. Refinements of merge operation on free list

fm
er

ge
(b
)
:
x

fmergeS
R

b ∈ F c = cnx(b) c ∈ F〈
H \ {c},F , cnx[b← cnx(c)]
csz[b← csz(b) + csz(c)]

〉
fremove(c)−−−−−−→ σ1

finsert(b)−−−−−→ σ2

σ
fmerge(b):b−−−−−−−→ σ2

fmergeF
R

b ∈ F c = cnx(b) c ∈ H \ F

σ
fmerge(b):b−−−−−−−→ σ

fmergeS
L

b ∈ F cnx(c) = b c ∈ F〈
H \ {b},F , cnx[b← cnx(c)], csz[b← csz(b) + csz(c)]

〉 fremove(b)−−−−−−→ σ1

σ
fmerge(b):c−−−−−−−→ σ1

fmergeF
L

b ∈ F cnx(c) = b c ∈ H \ F

σ
fmerge(b):b−−−−−−−→ σ

fm
er

ge
N
(b
)

fmergeS
N

b ∈ F σ
fmergeR(b):b
−−−−−−−−→ σ1

fmergeL(b):c
−−−−−−−−→ σ2

σ
fmergeN (b)
−−−−−−−→ σ2

hm
er

ge
∀

hmergeS
∀

b ∈ F σ
fmergeN (b)
−−−−−−−→ σ1

fmerge∀−−−−−→ σ2

σ
fmerge∀−−−−−→ σ2

fmergeF
∀

Iec

σ
fmerge∀−−−−−→ σ

A Refinement Hierarchy for Free List Memory Allocators 33

Table 27. Refinements of search operation on free list

fs
ea

rc
h(
n
)
:
c

fsearchS
FF

c ∈ F fit(c, n) ≤ csz(c) ∀b ∈ F · b < c⇒ csz(b) < fit(b, n)

σ
fsearch(n):c−−−−−−−→ σ

fsearchS
BF

c ∈ F fit(c, n) ≤ csz(c)
∀b ∈ F · (c 6= b ∧ fit(b, n) ≤ csz(b))⇒ (csz(b)− fit(b, n) ≥ csz(c)− fit(c, n))

σ
fsearch(n):c−−−−−−−→ σ

fsearchS
NF

c ∈ F fit(c, n) ≤ csz(c)
∀k, ` ≥ 0, b ∈ F · (c = fnxk(rp) ∧ b = fnx`(rp) ∧ fit(b, n) ≤ csz(b))⇒ (k < `)

σ
fsearch(n):c−−−−−−−→ σ

fsearchF
∗

∀b ∈ F · csz(b) < fit(b, n)

σ
fsearch(n):nil−−−−−−−−→ σ

Table 28. Refinements of init on free list

fin
it

finitA
c ∈ F

σ
finit(c)−−−−→

〈
H ← {hst}, F ← {hst},
cnx(hst)← hli, csz(hst)← hli− hst, fnx(fbe)← hst, fnx(hst)← fen

〉

finitD
c ∈ F

σ
finit(c)−−−−→

〈
H ← {hst}, F ← {hst}, cnx(hst)← hli, csz(hst)← hli− hst,
fpr(fen)← hst, fpr(hst)← fbe, fnx(fbe)← hst, fnx(hst)← fen

〉

finitC
c ∈ F

σ
finit(c)−−−−→

〈
H ← {hst}, F ← {hst}, cnx(hst)← hli, csz(hst)← hli− hst,
fnx(hst)← fen, fnx(fbe)← hst, fnx(fen)← fbe,rp← hst

〉

finitN
c ∈ F

σ
finit(c)−−−−→

〈
H ← {hst}, F ← {hst}, cnx(hst)← hli, csz(hst)← hli− hst,
fnx(fbe)← hst, fnx(hst)← fen,rp← hst

〉

ffr
ee

(p
)
:
t

ffreeS
eager

p = b+ chd b ∈ H \ F σ
finsert(b):b−−−−−−→ σ1

fmergeN (b):b
−−−−−−−−→ σ2

σ
ffree(p):true−−−−−−−→ σ2

ffreeS
eager

F
∀b ∈ H \ F · p 6= b+ chd

σ
ffree(p):false−−−−−−−→ σ

ffreeS
lazy

p = b+ chd b ∈ H \ F , σ finsert(b)−−−−−→ σ′

σ
ffree(p):true−−−−−−−→ σ′

ffreeS
lazy

F
∀b ∈ H \ F · p 6= b+ chd

σ
ffree(p):false−−−−−−−→ σ

34 Bin Fang and Mihaela Sighireanu

Table 29. Internal allocation operation on free list

fa
llo

c i
(s
)
:
b

fallocSfit

σ
fsearch(s):c−−−−−−−→ σ′ c ∈ F fit(c, s) = csz(c) p = c+ chd σ

fremove(c)−−−−−−→ σ′

σ
falloc(s):p−−−−−−→ σ′

fallocSsplit

σ
fsearch(s):c−−−−−−−→ σ′ c ∈ F fit(c, s) < csz(c) p = b+ chd σ′

fsplit(c,fit(c,s)):b−−−−−−−−−−→ σ′′

σ
falloc(s):p−−−−−−→ σ′′

fallocF
σ

fsearch(s):nil−−−−−−−−→ σ′

σ
falloc(s):nil−−−−−−→ σ′

Table 30. Refinements of alloc method on free list

fa
llo

c(
s)

:
b

fallocSeager

σ
falloci:p−−−−→ σ1

σ
falloc(s):p−−−−−−→ σ1

fallocFeager
σ

falloci(s):nil−−−−−−−→ σ

σ
falloc(s):nil−−−−−−→ σ

fallocSlazy

σ
fsearch(s):nil−−−−−−−−→ σ1

fmerge∀(b):b−−−−−−−→ σ2
falloci(s):p−−−−−−→ σ3

σ
falloc(s):p−−−−−−→ σ3

fallocS
′

lazy

σ
fsearch(s):p−−−−−−−→ σ1

falloci(s):p−−−−−−→ σ2

σ
falloc(s):p−−−−−−→ σ2

fallocFlazy

σ
fmerge∀−−−−−→ σ1 σ1

falloci(s):nil−−−−−−−→ σ2

σ
falloc(s):nil−−−−−−→ σ2

A Refinement Hierarchy for Free List Memory Allocators 35

Table 31. Refinements of realloc method on free list

fre
al

lo
c(
p
,n

)
:
q

freallocS1
b ∈ H \ F n > 0 p = b+ chd fit(b, n) = csz(b)

σ
frealloc(p,n):p−−−−−−−−→ σ

freallocS2

b ∈ H \ F n > 0 p = b+ chd cnx(b) = c c ∈ F
fit(b, n) > csz(b) fit(c, n− csz(b)) <= csz(c)

σ
fmergeR(b):b
−−−−−−−−→ σ1

fsplitB(b,fit(b,n)):b′−−−−−−−−−−−→ σ2

σ
frealloc(p,n):p−−−−−−−−→ σ2

freallocS3

b ∈ H \ F n > 0 p = b+ chd
cnx(b) = c fit(c, n− csz(b)) > csz(c) c ∈ F

fit(b, n) > csz(b) σ
falloc(n):q−−−−−−→ σ1

ffree(p):true−−−−−−−→ σ2

σ
frealloc(p,n):q−−−−−−−−→ σ2

freallocS4

b ∈ H \ F n > 0 p = b+ chd
cnx(b) = c c ∈ H \ F

fit(b, n) > csz(b) σ
falloc(n):q−−−−−−→ σ1

ffree(p):true−−−−−−−→ σ2

σ
frealloc(p,n):q−−−−−−−−→ σ2

freallocS5
n > 0 p = null σ

falloc(n):q−−−−−−→ σ1

σ
frealloc(p,n):q−−−−−−−−→ σ1

freallocS6
n = 0 σ

falloc(bmin):q−−−−−−−−→ σ1 σ1
ffree(p):true−−−−−−−→ σ2

σ
frealloc(p,n):q−−−−−−−−→ σ2

freallocS7

n > 0 p = b+ chd b ∈ H \ F fit(b, n) < csz(b)

σ
finsert(b)−−−−−→ σ1

fsplitB(b,fit(b,n)):b−−−−−−−−−−−→ σ2

σ
frealloc(p,n):q−−−−−−−−→ σ2

freallocF
p ∈ F

σ
frealloc(p,n):nil−−−−−−−−−→ σ

36 Bin Fang and Mihaela Sighireanu

S
D

K
B

T
[1

3]
|=

M
U

A
D

D
K

B
F

[1
3]
|=

M
SA

B
D

K
FF

[1
3]
|=

M
SA

F
D

K
N

F
[1

3]
|=

M
SA

N
D

L
[1

4]
|=

M
U

A
D

h
st

&
b
a
s
e

&
b
a
s
e

&
b
a
s
e

&
b
a
s
e

m
s
e
g
m
e
n
t
.
b
a
s
e

h
li

s
b
r
k
(
0
)

s
b
r
k
(
0
)

s
b
r
k
(
0
)

s
b
r
k
(
0
)

s
b
r
k
(
0
)

ch
d

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
m
a
l
l
o
c
_
c
h
u
n
k
)

ca
l

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
m
a
l
l
o
c
_
c
h
u
n
k
)

cs
z(
x
)

(
x
)
.
s
i
z
e
&
˜
1

x
-
>
s
.
s
i
z
e
*
s
i
z
e
o
f
(
H
e
a
d
e
r
)
x
-
>
s
.
s
i
z
e
*
s
i
z
e
o
f
(
H
e
a
d
e
r
)
x
-
>
s
.
s
i
z
e
*
s
i
z
e
o
f
(
H
e
a
d
e
r
)
(
x
)
.
s
i
z
e
&
3

cs
t(
x
)

(
x
)
.
s
i
z
e
&
1

−
−

−
(
x
)
.
s
i
z
e
&
1

cn
x(
x
)

x
+
(
x
.
s
i
z
e
)
/
2

(
H
e
a
d
e
r
*
)
x
+
x
-
>
s
.
s
i
z
e

(
H
e
a
d
e
r
*
)
x
+
x
-
>
s
.
s
i
z
e

(
H
e
a
d
e
r
*
)
x
+
x
-
>
s
.
s
i
z
e

(
x
-
b
a
s
e
+
x
-
>
s
.
s
i
z
e

fn
x

x
.
n
l
i
n
k

x
.
l
i
n
k

x
.
l
i
n
k

x
.
l
i
n
k

x
-
>
n
e
x
t

fb
e

A
V
A
I
L

A
V
A
I
L

A
V
A
I
L

A
V
A
I
L

m
s
e
g
m
e
n
t

fit
(c
,n

)
(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

S
T

O
P

S
Y

[8
]|
=

M
H

L
IB

M
[4

]|
=

M
H

L
A

[3
]|
=

M
SA

F
K

R
[1

1]
|=

M
SC

T
L

S
F

[1
8]
|=

M
U

A
D

h
st

s
t
a
r
t

s
t
a
r
t

_
h
s
t
a

&
b
e
g
i
n

−
h
li

e
n
d

e
n
d

s
b
r
k
(
0
)

s
b
r
k
(
0
)

s
b
r
k
(
0
)

ch
d

s
i
z
e
o
f
(
H
m
E
n
t
r
y
D
e
s
c
)

s
i
z
e
o
f
(
M
C
B
)

s
i
z
e
o
f
(
H
D
R
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

x
+
o
f
f
s
e
t
(
f
n
x
t
)

ca
l

4
s
i
z
e
o
f
(
M
C
B
)

s
i
z
e
o
f
(
H
D
R
)

s
i
z
e
o
f
(
H
e
a
d
e
r
)

s
i
z
e
o
f
(
b
l
o
c
k
_
h
e
a
d
e
r
)

cs
z(
x
)

(
l
o
n
g
)
x
-
>
n
e
x
t
-
(
l
o
n
g
)
x

x
-
>
s
i
z
e
*
s
i
z
e
o
f
(
M
C
B
)

x
-
>
s
i
z
e
*
s
i
z
e
o
f
(
H
D
R
)

x
-
>
s
.
s
i
z
e
*
s
i
z
e
o
f
(
H
e
a
d
e
r
)
(
x
)
.
s
i
z
e
&
˜
3

cs
t(
x
)

x
-
>
s
t
a
t
u
s

x
-
>
s
t
a
t
u
s

−
−

(
x
)
.
s
i
z
e
&
1

cn
x(
x
)

x
-
>
n
e
x
t

(
M
C
B
*
)
x
+
x
-
>
s
i
z
e

(
H
D
R
*
)
x
+
x
-
>
s
i
z
e

(
H
e
a
d
e
r
*
)
x
+
x
-
>
s
.
s
i
z
e

x
+
x
-
>
s
i
z
e

fn
x

−
−

x
-
>
p
t
r

x
-
>
s
.
p
t
r

x
-
>
f
n
x
t

fb
e

−
−

f
r
h
d

f
r
e
e
p

b
l
o
c
k
s

fit
(c
,n

)
(c

sz
>
(
(
n
+
3
)
&
0
x
0
F
+
8
)
)
?

n
+
4

(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

(
n
+
3
)
/
4
+
1

(
(
n
+
3
)
&
0
x
0
F
)
)
:
cs

z

	A Refinement Hierarchy for Free List Memory Allocators

